US Army Corps
of Engineerse.

Engineer Research and
Development Center

i

iy
-]
<
[
O
O
11
e
Q
a)
(c
Ll

RADIUS: Model-Based Optimization

SRI INTERNATIONAL: Pascal V. Fua, Christopher |. June 2000
Connolly, Aaron J. Heller, Lynn H. Quam, and Thomas M.
Strat

Center

ineering

Topographic Eng

20000802 186

I QALY LNEFECTED ¢4

Approved for public release; distribution is unlimited.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate
or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Adington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 2000 Final Technical Report -Sep 1992 - Feb 1997
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

RADIUS: Model-Based Optimization Final Report

6. AUTHORS

Thomas M. Strat, Sr., Lynn H. Quam, Sr., Pascal V. Fua, Aaron J. Heller, DACA76-92-C-034

Christopher I. Connolly

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
’ REPORT NUMBER

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025-3493

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Defense Advanced Research Projects Agency :
3701 North Fairfax Dr., Arlington, VA 22203-1714 ERDC/TEC CR-00-1
U.S. Army Topographic Engineering Center

7701 Telegranh Road. Alexandria. VA 22315-3864

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 words)

The construction and use of 3-D models of military and industrial sites will allow revolutionary advances
in the speed, confidence, and range of analytical techniques with which an Image Analyst (IA) develops
and reports intelligence information. This SRI research project, in support of the RADIUS Program, seeks
to increase the speed and accuracy with which site models can be constructed from current imagery by
developing a new family of image understanding (IU) techniques, and by developing a novel way for an
IA to employ them. This report describes the techniques developed at SRI under the RADIUS project.
The techniques described here have been integrated and tested in the RADIUS Common Development

Environment.
14. SUBJECT TERMS 15. NUMBER OF PAGES
Computer vision, aerial image analysis, RADIUS, optimization, and
snakes 132
16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY 20. LIMITATION OF
OF REPORT OF THIS PAGE CLASSIFICATION OF ABSTRACT
ABSTRACT
Unclassified Unclassified Unclassified Unlimited

NSN 7540-01-280-5500 (SRI on-line version) Standard Form 298 (Rev. 2-89)
- Prescribed by ANSI Sta 239.18

TABLE OF CONTENTS

List of Figures vii
List of Tables ix
1 Introduction ' 1
2 Research Goals 1
3 Model-Based Optimization 2
4 Context-Based Architecture 3
5 Conclusion 6

A Model-Based Optimization: An Approach to Fast, Accurate, and Consistent Site

Modeling from Imagery 7
1 Introduction 7
2 Generalized Snakes 8
2.1 Polygonal Snakes o oo e e 8
29 Smooth Snakes and Ribbons oo 9
23 NetWork SNAKES . « . o o o o o o oo e e 13
24 3-DSurface MEShES . . . o o o oo e e 15
3 Enforcing Consistency 20
3.1 Constrained Optimization in Orthogonal Subspaces oo oe e e 20
32 Constraining Snake Optimization oo oo 22

33 Multiple Snakes o« oo o 24

i

Consistent Site Modeling

Conclusion

| Appendix: Evaluating the Effectiveness of MBO
al InstrumentingRCDE . . . oo oo ov v

a2 Experimental Results oo
Ziplock Snakes

Introduction

Traditional Snakes

Ziplock Snakes

3.1 Solving the Minimization Problem with Boundary Conditions- -
39 IALZALON . « « « o o oo e

33 Optimization Procedure+« oo s s s
Discussion
Results

Conclusion

The Site-Model Construction Component of the RADIUS Testbed System

Introduction
11 InstrumentingRCDE oo oo vv oo e o

1.2 Experimental Results« oo

v

27

29

29

30

35

35

37

39

40

41

42

46

48

50

53

53

Context-Based Vision

Introduction

The CONDOR Architecture

9] COMEXLSELS . o v v oo e e e e
2.2 Context TADIES . . o o s e e e e e e e e e

23 COMEXtRULES . . o v v v oo oo e e

Context-Based Architecture: the HUB

B TS « « o o e e e e e e e s
32 VoCBUIAIY . o . e e e e e
33 PrediCates o o o v e s e e e s e e s .
34 RUIES . o o o v v ee e e
35 ChainRUIE . o o o vooe oo e e
36 RUIEPACKELS . . o v v v e o e e e s e m e

37 USer INEIfACE . . . o o o v woo oo v o e s

Conclusion

Learning Control Parameters of a Vision Process Using Contextual Infor

Introduction

1.1 A Cartographic Application« ..o

1.2 An Approach to Learning Visual Parameters

General Scheme

Application Domain Constraints

59
59

60
61
61

62

63
65
65
68
68
70
70

72

73

77
78

79
82

83

Retrieval based on Similarity 84

Learning by Observation 87
Retrieval based on Conceptual Clustering 91
6.1 COBWEB . o v v oo omomo e o emm e s T 92
6.2 Enhancing COEWEB capabilities o .o e e e 92
Data Base Update 94
Snakes 94
Experimental Results: Learning and Selecting Snake Parameters 96
Q.1 Presentation . . . - o« o s s s s s s s s T 96
92 SystemEvaluationooee s T 104
93 Evaluation of Retrieval Procedure . . .« .« oo cve e 105

9.3.1 Experimentalresults T 106

932 Influenceof exampleordero c e T T 107

9033 Influenceofnpandmy - - e e s T 108

934 Influence of number of context elements . . . v o v e e e e 109

Conclusion 110
Snakes 111
al 2-DLinearSnakes« - occo e T 111
a2 3-DLinearSnakes - o o oces s s s st T 113
43 RIDDOMS . o o oo eee e e e 114

vi

10

11

12

13

14

15

16

17

18

19

20

21

22

23

LIST OF FIGURES

Rugged terrain with sharp ridge lines.o oo e 10
Recovering the 3-D geometry of both terrain and ridges. 11
SNAKE tOPOIOZY. - « o o v v v e e w e m e e e e 13
Edge visibility U IR 14

Buildings modeled by entering rough models and optimizing with extruded snakes. 16

Mesh representation and computation of the image terms fo the objective function. 17

Constrained OPHMIZAtON. -« v« v v v vt 22
Buildingasitemodel 25
Recovering the 3-D geometry of both terrainandroads. 26
Composite MOdel. o o oot 27
An image with two overlaidroads.o 32
Distance to hand-enteredroads. o .o e e 32
Amount of €ffOTt. . o . o v o e e e e e e e e e e 33
Outlining facial features.« . o oo oo a e 35
Sensitivity of traditional snakes to nearby contours. 39
Ill-conditioned behavior of the traditional snakes with respect to initialization. . . . 40
Schematic of the Ziplock Snake during optimization. 42
The effect of initialization for ziplock and traditional snakes. 44
Evolution of a ziplock snake on the synthetic image of Figure 15 45
Compared behaviors of ziplock and traditional snakes on an image of an apple. . . 45
Detection of different image features by ziplock snakes. 48
Outlining roads in an aerial iImage.« o 49
Segmentation of a corpus callosumo 50

vii

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Delineating roads on an aerial image using ribbon snakes. 52

An image with two overlaid roads.o e e ERRREE 55
Distance to Hand-entered roads. . . . <o e o e e 56
Amount Of €ffOMt. . o v o v v e n e e e e e e e 57
Documentation of compound terms. e e 64
Documentatioﬁ of some predicates. . . .« - oo oo e e e 64
Documentation of some of the top-levelrules.oveee e 64
The Chain Rule. . « . « <+« o« -« - AU 69
The rule packet for the Road Tracker algorithm.« oo oo 70
The rule packet for the Ziplock Snakes algorithm. T
Interacting withthe HUB o oo oo v oo e n o 75
General SCHEME . « v« v v v e v o s e e e e 83

(a) Two images from one site used in our tests. (b) 3-D seed curve defined in two

B 97

Context menus: global context elements (left), site-specific context elements (right). 97

Snake-optimized 3-DCurve oo 98

(a) Example of images of the first test site. (b) Ribbon seed curve. (c) Snake-

optimized ribbon curve. (d) Provided parameters.cc e e 99

(a) Example of images of the second test site. (b) Closed 2-D curve. (c) Snake-

optimized 2-D curve. (d) Provided parameters.t 103
Cumulative number of manual settings of parameters« e 105
Influence of n; values over percentage of sUCCess. - .. oo e 108
Influence of ng values over percentage of SUCCESS. - - v o e e s e 109

vili

10

11

12

13

LIST OF TABLES

SNAKE tAXONOMIY . .« « « v o o v e oo e s e e 3
SNAKE tAXONOMIY « « « « « o o s v o e oo s e s e e s e 8
An Exampleof aContext Table oo vvvoe e 62
Different types of variables handled by thesystem. 84
Exemple of n01;rna1izati0n performed on three types of context element. 86
Summary of selected system COMPAriSON. . « .« v v o v oo m e s 100
Control Structure of COBWEB (From [78]) - - v o e e 101
Example of categorization with three variables and three categories. 101
Example of categorization with three variables and three categories. 101
Snake categorical and numerical control parameters. oo s e 102
Percentage of success of the different retrieval techniques. 106

Standard deviation of the number of successes for the different retrieval techniques. 108

Percentage of success of the different retrieval techniques using a subset of seven

CONEEXt ElEMENLS. . o . o v o o v o m oo oo e e e e 110

ix

Tt

PREFACE

This report describes research preformed on the final year of the project RADIUS: Model-Based
Optimization. This research is supported by Defense Advanced Research Projects Agency
(DARPA) of the Department of Defense (DoD) and is monitored by the U.S. Army topographic
Engineering Center (TEC) under the contract DACA76-92-C-0034. The DARPA Program
Manager is Dr. Thomas M. Strat and the TEC Contracts Officer Representative (COR) is Ms.
Lauretta E. Williams.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of DARPA, United
States Government, or SRI International.

1 INTRODUCTION

The construction and use of 3-D models of military and industrial sites will allow revolutionary
advances in the speed, confidence, and range of analytical techniques with which an image
analyst (IA) develops and reports intelligence information. This SRI research project, in support
of the Research and Development in Image Understanding Systems (RADIUS) Program, seeks to
increase the speed and accuracy with which site models can be constructed from current imagery
by developing a new family of image understanding (IU) techniques, and by developing a novel

way for an IA to employ them.

Our research has proceeded on two fronts simultaneously:

o Extending the generality and power of model-based optimization algorithms (MBO)
o Developing a context-based approach to IA control of TU algorithms
We first present our overall research goals and then discuss our progress toward advancing the

state-of-the-art in these two areas. This report also incorporates as appendices (A through E)

several technical papers describing our research in detail.

2 RESEARCH GOALS

Model-Supported Exploitation (MSE) is the analysis of imagery (by human or computer) with the
aid of 2-D and 3-D models of the scene [1, 2, 3]. Two major scientific problems must be solved
for MSE to be a viable concept for use in an operational intelligence setting. A successful MSE

system must have:

e An interface that enables the IA to easily specify what he or she wants the machine to do.
e A set of algorithms that enables the machine to perform the tasks posed by the IA.
While the majority of research in IU has been concerned with fully automated algorithms for

interpreting images, the Perception Group at SRI has made the design and implementation of

semiautomated systems a major goal.

o We have extended the MBO technology to provide the capability of extracting many

different object classes under a variety of imaging and scene conditions. Integrated into the

RADIUS Common Development Environment (RCDE), this technology constitutes an

operational suite of tools tailored to the needs of the site model builder.

e We are developing a software architecture that automatically chooses IU algorithms and
their parameters, given modeling tasks posed by an IA. The centerpiece of the approach is a
framework that reasons about the context of the given task to make these choices

intelligently.

3 MODEL-BASED OPTIMIZATION

Model-based optimization is a paradigm in which an objective function expresses both geometric
and photometric constraints on features of interest. A parametric model of a feature (such as a
road, building, or coastline) is extracted from one or more images by adjusting the model’s state
variables until 2 minimum value of the objective function is obtained. The optimization procedure
yields a description that simultaneously satisfies (or nearly satisfies) all constraints and, as a

result, is likely to be a good model of the feature.

Implementation of an MBO algorithm requires the specification of four components:

Objective function: A mathematic function that expresses the preferred geometric and

photometric properties to be exhibited by the feature.

Representation: The geometric primitives used to represent the feature, thereby limiting the

class of features that can be modeled.

Optimization: The procedure to be employed for finding a configuration of the feature that

locally minimizes the objective function.

Initial conditions: The configuration of the feature used as the starting point by the

optimization procedure.

Ouf research addresses all four of these areas, seeking to find instantiations of the MBO paradigm

that provide effective means for extracting features of interest to the RADIUS Program.

The deformable models we use here are extensions of traditional snakes [4, 5, 6] that we refer to
as generalized snakes. They are polygonal curve or planar face objects to which is associated an
objective function that combines an image-derived term that measures the fit to the image data

and a regularization term that enforces geometric constraints.

In the course of the contract, we have extensively reorganized and extended our MBO package to
accommodate more and more complex types of objects. Initially, we could only deal with

polygonal curves that could be modeled as a sequential list of vertices. However, many objects

that are of importance to a photoanalyst and are supported by RCDE, such as road networks or

3-D extruded objects, do not fit this model. Their topology is that of a network and, to describe ‘
them completely, one must supply, not only the list of their vertices, but also a list of “edges” that
defines the connectivity of those vertices. In addition, with some of these complex objects, one L

can also define “faces.” that is circular lists of vertices that must be constrained to remain planar.

We have therefore introduced new breeds of snake and can now accommodate the full taxonomy
of snakes described by Table 1. These generalized snakes are described in detail in Appendix A.

Table 1: Snake taxonomy. The columns represent different types of snake and the rows different
kinds of constraint that can be brought to bear. The table entries are examples of objects

that can be modeled using these combinations.

[Constraints/Type || Simple curve [Ribbon curve | Network |
Smooth Low res. roads, rivers | High res. roads | Road networks
Polygonal Man-made structures | City streets Street Networks
Planar Planar structures City streets Street Networks
Rectilinear Roof tops, parking lots | City streets Buildings

In collaboration with ETH-Ziirich, we also have developed a new approach to snake-based
delineation. This method allows a user to outline an open contour by specifying only very distant
end points and allows the system to propagate edge information from the extremities toward the

center. This substantial improvement over traditional snakes is documented in Appendix B.

We have evaluated the effectiveness of our package by instrumenting the code to record the
amount of user intervention. We have found that using our snakes to model high-resolution roads
leads to a five-fold reduction in effort as measured by the number of mouse clicks or mouse travel

time. These results are documented in Appendix C.

Furthermore, we have developed a constrained-optimization scheme that allows us to impose hard
constraints on our snakes. For example, we can ensure that two snakes are at a given distance

from each other or that the altitude along the model of a river decreases monotonically [7].

4 CONTEXT-BASED ARCHITECTURE

Thirty years of IU research have produced an enormous number of computer vision algorithms,

many of which have demonstrated reliable performance at solving particular tasks in restricted

v

domains. However, the development of computer vision systems that are reliable in more general
circumstances has proved elusive [8]. It is in response to this situation that a framework is offered
within which computer vision algorithms of specialized competence can be used and integrated
with other such algorithms to produce a reliable vision system that operates effectively in a
broader context than any of its individual component algorithms. Recently, other authors have
stressed the use of context to aid image interpretation [9, 10, 11].

The site model construction and editing systems being developed within the RADIUS program
comprise numerous computer vision algorithms, each tailored to accomplish a particular task
under a particular set of circumstances. The goals of these algorithms may overlap, or the
algorithms may even duplicate each other’s goals, but the assumptions that they make and the data
with which they operate will often differ. In automatically choosing suitable algorithms and
parameter settings to solve particular IU tasks, it is important to minimize the understanding of IU
technology that is required of a user who endeavors to use the algorithms. Within the RADIUS
Program this concern is paramount because of the need to put advanced IU technology in the

hands of casual users, specifically the image analysts.

Our strategy for integrating such a collection of computer vision algorithms is based on prior
work in context-based vision at SRI [12, 3, 13]. We represent explicitly the assumptions made by
each algorithm, and use the context of the present task to select the most appropriate algorithms
for solving that task. By doing so, we seek to avoid the source of many failures of computer
vision techniques — the employment of an algorithm outside the bounds of its intended domain
of competence. We have implemented within RCDE a prototype of a context-based architecture
(CBA), which offers a design methodology with broad applicability. For example, CBA is an
attractive framework for organizing a site model construction system using many algorithms that

extract different features under different circumstances.

We have integrated a prototype system into RCDE, known as the Hierarchical Update and Build
(HUB) System. We have chosen to use logic programming to implement the context-based

architecture because:

e It provides a natural declarative language for expressing the constraints.

e Unification provides a powerful mechanism for matching the contextual constraints (as

encoded in the rules) to the current context.

e The logical backchaining of a rule based system provides the ability to search the rule base

for algorithms that are applicable.

It is clear that the performance of an IU system employing the context-based architecture could
also be attained by integrating the same computer vision algorithms via more traditional methods.
However, the explicit representation of contextual constraints affords the following additional

benefits that would be lost to a purely functional integration.

Task specification: The context-based architecture allows the user to specify the task to be
accomplished, leaving the selection of specific algorithms to be decided by the system. For
example, the user can state that he would like the system to construct a 3-D model of a
building, and the system would decide which of several building extraction algorithms
would be most appropriate given the currently available imagery and auxiliary data. The
user can make effective use of the IU system while possessing little knowledge of the

capabilities and limitations of the individual computer vision algorithms.

[

Choosing parameters: The context rules are used to establish algorithm parameter settings in
the same way that they delimit the range of applicability. While computer vision algorithms
can often compute their parameter settings from data at runtime, the context rules provide a
uniform means for all algorithms to specify how their parameters are to be determined.

Incremental integration: When building large systems in an evolutionary fashion, it can be
difficult to add new capabilities without jeopardizing the integrity of existing capabilities.
The modular decomposition of the context rules allows the developer to integrate a new

algorithm by adding a packet of rules governing its use, without modifying existing code.

Choosing imagery: It is sometimes important to identify the imagery that is most likely to allow
an algorithm to yield a desired result, rather than to choose an algorithm to run on a
preselected image. The context rules already encode the information necessary to make this
determination — they can be used to answer this question by fixing the algorithm and
allowing the image to be a variable in the query. In fact, the context-rule base can be used to

answer both questions simultaneously, finding the best combination of algorithms and

images to satisfy a given task.

i

The HUB is described in more detail in Appendix D.

To complement the HUB, we have also investigated the issue of parameter learning as a function
of image content, collateral data, and task requirements. We have proposed the framework
described in Appendix E that lays the foundation for new learning mechanisms to be developed

and tested. We have also offered solutions to some of the subproblems that arise: how to define

similarity of context vectors in which elements are both numerical and categorical, how to choose

among the multiple parameter vectors that might be retrieved from the data base, and how to
update the data base with experience gained through continual use of the feature extraction
system. We have implemented and tested an initial design and demonstrated successful

performance, within RCDE, using the MBO algorithms.

5 CONCLUSION

The RADIUS Program can benefit greatly from the use of more highly automated means for

constructing and updating 3-D site models.

Research on model-based optimization has led to the development of tools that increase the
degree of automation and precision that is possible. These tools have been implemented in the
RCDE and are being incorporated in the RADIUS Testbed. Further use of these tools within the
Testbed will undoubtedly lead to new ideas and additional improvements in the site-model

construction process.

Work on the context-based vision paradigm has led to the development of an architecture for
integrating independently developed IU algorithms within a single system. The architecture
provides the additional benefit of allowing the image analyst to specify a desired result, rather

than a specific procedure to be followed, in carrying out a site model construction task.

Together, these developments, which were beyond the state of the art at the outset of this project
four years ago, have dramatically increased the feasibility of constructing and maintaining 3-D
site models for use within the RADIUS Testbed.

A MODEL-BASED OPTIMIZATION: AN APPROACH TO FAST, ACCURATE, AND
CONSISTENT SITE MODELING FROM IMAGERY

Author: P. Fua
To appear in RADIUS: Image Understanding for Intelligence Imagery, Oscar Firschein and

Thomas M. Strat, editors, Morgan Kaufmann Publishers, 1997.

1 INTRODUCTION

Model-Based Optimization (MBO) is a paradigm in which an objective function is used to
express both geometric and photometric constraints on features of interest. A parametric model of
a feature (such as a road, a building, or coastline) is extracted from one or more images by
automatically adjusting the model’s state variables until a2 minimum value of the objective
function is obtained. The optimization procedure yields a description that simultaneously satisfies

(or nearly satisfies) all constraints, and, as a result, is likely to be a good model of the feature.

The deformable models we use here are extensions of traditional snakes [4, 5, 6]. They are
polygonal curves or facetized surfaces to which is associated an objective function combining an

“jmage term” that measures the fit to the image data and a regularization term that enforces

geometric constraints.

Because features and surfaces are all uniformly modeled, we can refine several models
simultaneously and enforce geometric and semantic constraints between objects, thus increasing
not only the accuracy but also the consistency of the reconstruction. The ability to apply such
constraints is essential for the accurate modeling of complex sites in which objects obey known
geometric and semantic constraints. In particular, when dealing with multiple objects, it is crucial
that the models be both accurate and consistent with each other. For example, individual
components of a building can be modeled independently, but to ensure realism, one must
guarantee that they touch each other in an architecturally feasible way. Similarly, when modeling
a cartographic site from aerial imagery, one must ensure that the roads lie on the terrain—and not
above or below it—and that rivers flow downhill. To that end, we have developed a
constrained-optimization scheme that allows us to impose hard constraints on our snakes at a very

low computational cost while preserving their convergence properties.

We first introduce our generalized snakes. We then present our constrained-optimization scheme.
Finally, we demonstrate its ability to enforce geometric constraints upon individual snakes and

consistency constraints upon multiple snakes to produce complex and consistent site models.

2 GENERALIZED SNAKES

We model linear features as polygonal curves that may be described either as a sequential list of
vertices, or, for more complex objects such as a road network or a 3-D extruded object, described
by the network topology. In the latter case, to describe the object completely, one must supply not
only the list of vertices but also a list of “edges” that defines the connectivity of those vertices. In
addition, with some of these complex objects, one can also define “faces,” that is, circular lists of

vertices that must be constrained to remain planar.

Similarly, we model the terrain on which these features rest as triangulated surface meshes whose
shape is defined by the position of vertices and can be refined by minimizing an objective

function.

Our ultimate goal is to accommodate the full taxonomy of those “generalized snakes” described
by Table 2. The algorithms described here are implemented within the RADIUS Common
Development Environment (RCDE) [14]. The system has been installed at the National
Exploitation Laboratory where it is used in a quasi-operational mode by professional image

analysts.

Furthermore, we have evaluated the effectiveness of our package by instrumenting the code to
record the amount of user intervention. We have found that using our snakes to model
high-resolution roads leads to a fivefold reduction in effort as measured by the number of mouse

clicks or mouse travel-time. These results are documented in the Appendix.

Table 2: Snake taxonomy. The columns represent different types of snakes and the rows different
kinds of constraints that can be brought to bear. The table entries are examples of objects
that can be modeled using these combinations.

[Constraints/Type || Simple curve [Ribbon curve | Network | Meshes |
Smooth Low res. roads, rivers | High res. roads | Road network Terrain
Polygonal Man-made structures | City streets Street networks
Planar Planar structures City streets Street networks
Rectilinear Roof tops, parking lots | City streets Buildings

2.1 Polygonal Snakes

A simple polygonal snake, C, can be modeled as a sequential list of vertices, that is, in two

dimensions, a list of 2-D vertices 5 of the form

S ={xiyi),i=1....,n} , (1)

and, in three dimensions, a list of 3-D vertices S5 of the form

.53={(x,-y,'z,~),i=1,...,n} .)

In this paper, we refer to S, the vector of all x, y, and z coordinates of the 2-D or 3-D vertices that =

define the deformable model’s shape as the model’s state vector.

In the 2-D case, the “image energy” of these curves—the term we try to minimize when we

perform the optimization is taken to be

|C]
B(O) =g [, VI ds ®

where I represents the image gray levels, s is the arc length of C, f(s) is a vector function mapping
the arc length s to points (x,) in the image, and |C | is the length of C. In practice, Z;(C) is
computed by integrating the gradient values |V I(£(s))| in precomputed gradient images along the

line segments that connect the polygonal vertices.

In the 3-D case, illustrated by Figures 1 and 2(a), %(C) is computed by projecting the curve into
a number of images, computing the image energy of each projection, and summing these energies.

2.2 Smooth Snakes and Ribbons

These snakes are used to model smoothly curving features such as roads or ridgelines.

2-D curves. Following Kass et al. [5], we choose the vertices of such curves to be roughly

equidistant and add to the image energy F; a regularization term Ep of the form

Ep(C) = py Xi(xi — xi-1)* + (i = Yi-1)2
a2 (2% = xi1 — Xiw1)+ (21 — Yie1 = Vil)?

4)

and define the “total energy” Er as
Er(C) = Ep(C) + E(C) . (5)

The first term of Ep approximates the curve’s tension, and the second term approximates the sum
of the square of the curvatures, assuming that the vertices are roughly equidistant. In addition,

when starting, as we do, with regularly spaced vertices, this second term tends to maintain that

regularity. To perform the optimization we could use the steepest or conjugate gradient, but it

tw

Figure 1: Rugged terrain with sharp ridge lines. (a,b,c) Three images of a mountainous site. (d)
Shaded view of an initial terrain estimate. (e) Rough polygonal approximation of the
ridgelines overlaid on image (a). (f) The terrain and ridgeline estimates viewed from the

side (the scale in z has been exaggerated).

would be slow for curves with large numbers of vertices. Instead, it has proven much more

effective to embed the curve in a viscous medium and solve the equation of the dynamics

3L dS
L 2~ o
PA) +O((lr (6)
C9E 9E, OE
N
Wit 55 35 T o5

where ‘E is the energy of Equation a-3. o the viscosity of the medium, and § the state vector that
defines the current position of the curve. Since the deformation energy Zp in Equation a-4 is

quadratic, its derivative with respect to S is linear, and therefore Equation a-5 can be rewritten as

JoE

KeS, ~ (S —Si_1) - 55
S,

10

(d) (H)

Figure 2: Recovering the 3-D geometry of both terrain and ridges. (a) Refined ridgeline after
3-D optimization. (b) Shaded view of the terrain after refinement. (¢) Side view of the
ridgeline and terrain after independent optimization of each one. Note that the shape
of the ridgeline does not exactly match that of the terrain. (d) Differences of elevation
between the recovered ridgeline and the underlying terrain. The image is stretched so
that black and white represent errors of minus and plus 80 feet, respectively. (e) Side
view after optimization under consistency constraints. (f) Corresponding difference of

elevation image stretched in the same fashion as (d).

JE
= (Ks+0od)S, = oS-1— 3¢ (7)
! E
where I,
Jd'Lp
= KS.
35 S

and Ky is a sparse matrix. Note that the derivatives of ‘Ep with respect to x and y are decoupled so

that we can rewrite Equation a-6 as a set of two differential equations of the form

(K+al)V—1=aV, | — =2 . (8)

¥

Iy

where V stands for either X or Y, the vectors of the x and y vertex coordinates, and X is a
pentadiagonal matrix. Because K is pentadiagonal, the solution to this set of equations can be
computed efficiently in O(n) time using LU decomposition and backsubstitution. Note that the

LU decomposition need be recomputed only when o changes.

In practice, o is computed in the following manner. We start with an initial step size Ap,

expressed in pixels, and use the following formula to compute the viscosity:

V2n

o= ——
AP

35 9)

af‘

where n is the number of vertices. This ensures that the initial displacement of each vertex is on
the average of magnitude A,. Because of the nonlinear term, we must verify that the energy has
decreased from one iteration to the next. If, instead, the energy has increased, the curve is reset to
its previous position, the step size is decreased, and the viscosity recomputed accordingly. This
procedure is repeated until the step size becomes less than some threshold value. In most cases,
because of the presence of the linear term that propagates constraints along the whole curve in

one iteration, it takes only a small number of iterations to optimize the initial curve.

3-D curves. To extend the smooth snakes to three dimensions, we add one term in z to the
deformation energy of Equation a-4. Since the derivatives of Ep with respect to x, y, and z are still
decoupled, we can rewrite Equation a-6 as a set of three differential equations of the form of

Equation a-7, where V now stands for either X, Y, or Z, the x, y, or z vertex coordinates.

The only major difference with the 2-D case is the use of the images’ camera models. In practice,
F(C) is computed by summing gradient values along the line segments linking the vertices’
projections. These projections, and their derivatives, are computed from the state vector S by
using the camera models. Similarly, to compute the viscosity, we use the camera models to
translate the average initial step A,, a number of pixels, into a step A, expressed in world units

and use the latter in Equation a-7.

Ribbons 2-D snakes can also be extended to describe ribbon-like objects such as roads in
aerial images. A ribbon snake is implemented as a polygonal curve forming the center of the
road. Associated with each vertex i of this curve is a width w; that defines the two curves that are

the candidate road boundaries. The list of vertices can be written as

&:{(x,-yiw,-)},i:l,...,n} . (10)

12

The state vector S becomes the vector of all x, y, and w and the average edge strength the sum of
the edge strengths along the two boundary curves. Since the width of roads tends to vary
gradually, we add an additional energy term of the form

Ew(C) = Y (wi—wi1)’ (11)
OB _
=>3V7 = LW,

where W is the vector of the vertices’ widths and L a tridiagonal matrix. The total energy can then
be written as

% C) =M Ep(C) +Mw Bw (C) +AcEi(C)

where Ap and Aw weigh the contributions of the two geometric terms. At each iteration the
system must solve the three differential equations in the form of Equation a-7, where V now

stands for either X, Y, or W, the x, y, or w vertex coordinates.

2D ribbons can be turned into 3-D ones in exactly the same way 2-D snakes are turned into 3-D
ones. The state vector S becomes the vector of all x, y, z, and w and, at each iteration, the system

must solve four differential equations, one for each coordinate.

2.3 Network Snakes

The 2-D and 3-D “network snakes” are a direct extension of the polygonal snakes of Section 2.1.

(a) (b)

Figure 3: Snake topology. (a) A simple polygonal curve described by a sequential list of vertices
v;, 1 <i<5. (b) A network described by a list of vertices v;, 1 <i < 8, and a list of

edges—((12)(23)(34)(45)(26)(37) (7 8)).

In the 2—D case, the extension is straightforward. A network snake is now defined by a listof n

vertices S as before and a list of edges A = {(i,j) where | <i<nand1 < j< n}. Figure 3

13

“

depicts such a network snake. F;(C) is computed as

BO)= Y F// X LY, (12)

(i,))eA (i,))eA

where fE,'"j is the sum of the edge gradients along the ((x;,y:)(x;,y;)) segment and L is its
length. The snake is optimized using either steepest gradient descent or conjugate gradient.

(a) (b)

Figure 4: Edge visibility. (a) An RCDE “extruded object.” Only the visible faces—that is, those
whose normal is oriented toward the viewer—are drawn. Note that this heuristic does
not account for nonconvexity, and as a result the faces in the lower left corner of the
image are improperly drawn. (b) The network snake generated to optimize the extruded
object. It includes roof edges and vertical wall edges. The edges at the back of the
building are not drawn—and not used during the computations involving these views—
because they belong to hidden faces. The edges at the base of the building are treated as
invisible because their appearance is unreliable in typical imagery.

In the 3-D case, one must take into account the fact that not all the network’s edges are visible in
all views. As a result one must also provide, for each projection of the snake into all the images, a
list of visible edges. We compute this list by using the face-visibility methods embedded in
RCDE as shown in Figure 4.

The number of degrees of freedom of generic 3-D networks can be reduced by forcing them to be

planar. We do this either by defining a plane of equation
z=ax+by+c (13)

and imposing that the vertices lie on such a plane or imposing planar constraints on sets of four
vertices using the constrained-optimization approach introduced in Section 3.1. In both cases, we

replace the n degrees of freedom necessary to specify the elevation of each vertex by the three

14

degrees of freedom required to define the plane.

These 3-D networks can be further specialized to handle objects that are of particular interest in
urban environments: trihedral corners found on building roofs and extruded objects that are used
in RCDE to model building outlines. In Figure 5, we show several buildings modeled by roughly
entering their outlines within RCDE and optimizing the shapes in three views simultaneously by
using our extruded snakes. The use of the snakes has allowed us to perform this task much faster
than we would have if we had to precisely delineate all five buildings by hand. To produce this
result, we have used the constrained-optimization technique of Section 3.1 to constrain the “wall”
edges to remain vertical. We can also constrain the “roof outline” to be planar and the “roof

edges” to form 90-degree angles. These constraints greatly reduce the number of degrees of

freedom and allow for better convergence properties.

2.4 3-D Surface Meshes

Given the task of reconstructing a surface from multiple images whose vantage pbints may be
very different, we need a surface representation that can be used to generate images of the surface
from arbitrary viewpoints, taking into account self-occlusion, self-shadowing, and other
viewpoint-dependent effects. Clearly, a single image-centered representation is inadequate for

this purpose. Instead, an object-centered surface representation is required.

Many object-centered surface representations are possible. However, practical issues are
important in choosing an appropriate one. First, the representation should be general-purpose in
the sense that it should be possible to represent any continuous surface, closed or open, and of
arbitrary genus. Second, it should be relatively straightforward to generate an instance of a
surface from standard data sets such as depth maps or clouds of points. Finally, there should be a
computationally simple correspondence between the parameters specifying the surface and the
actual 3-D shape of the surface, so that images of the surface can be easily generated, thereby

allowing the integration of information from multiple images.

A regular 3-D triangulation is an example of a surface representation that meets the criteria stated
above, and is the one we have chosen for our previous work. In our implementation, all vertices
except those on the edges have six neighbors and are initially regularly spaced. Such a mesh
defines a surface composed of three-sided planar polygons that we call triangular facets, or simply
facets. Triangular facets are particularly easy to manipulate for image and shadow generation;
consequently, they are the basis for many 3-D graphics systems. These facets tend to form

hexagons and can be used to construct virtually arbitrary surfaces. Finally, standard triangulation

15

o

Figure 5: Buildings modeled by entering rough models within RCDE and optimizing them using
the extruded snakes. (1) Rough initial sketches overlaid on one of the images. (b) A
view from a different perspective. (c.d.e) Final building outlines overlaid on the three
images we used to perform the 3-D optimization. (f) A view of the buildings from the

perspective of (b).

algorithms can be used to generate such a surface from noisy real data [15, 16].

16

(@ (b) (©)

Figure 6: Mesh representation and computation of the image terms of the objective function: (a)
Wireframe representation of the mesh. (b) Facets are sampled at regular intervals; the
circles represent the sample points. The stereo component of the objective function is
computed by summing the variance of the gray level of the projections of these sample
points, the g;s. (c) Each facet’s albedo is estimated using its normal N, the light source
direction L, and the average gray level of the projection of the facet into the images.
The shading component of the objective function is the sum of the squared differences

in estimated albedo across neighboring facets.

Sources of information. A number of information sources are available for the reconstruction

of a surface and its material properties. Here, we consider two classes of information.

The first class comprises those information sources that do not require more than one image, such
as texture gradients, shading, and occlusion edges. When using multiple images and a full 3-D
surface representation, however, we can do certain things that cannot be done with a single image.
First, the information source can be checked for consistency across all images, taking occlusions
into account. Second, when the source is consistent and occlusions are taken into account, the
information can be fused over all the images, thereby increasing the accuracy of the

reconstruction.

The second class comprises those information sources that réquire at least two images, such as the
triangulation of corresponding points between input images (given camera models and their
relative positions). Generally speaking, this source is most useful when corresponding points can
be easily identified and their image positions accurately measured. The ease and accuracy of this
correspondence can vary significantly from place to place in the image set, and depend critically
on the type of feature used. Consequently, whatever the type of feature used, one must be able to
identify where in the images that feature provides reliable correspondences, and what accuracy

one can expect.

The image feature that we have chosen for correspondence (although it is by no means the only

one possible) is simply intensity in radiometrically corrected images—for example, by filtering

17

them. Clearly, intensity can be a reliable feature only when the albedo varies quickly enough on

the surface and, consequently, the images are sufficiently textured.

Simple correlation-based stereo methods often use fixed-size windows in images to measure
disparities, which will in general yield correct results only when the surface is parallel to the
image plane. Instead, we compare the intensities as projected onto the facets of the surface.
Consequently, the reconstruction can be significantly more accurate for slanted surfaces. Some
correlation-based algorithms achieve similar results by using variable-shaped windows in the
images [17, 18, 19, 20, 21]. However, they typically use only image-centered representations of

the surface.

Our approach is much more closely related to the least-squares approaches advocated by
Wrobel [22] and Heipke [23], who both use a 2-1/2-D representation of the surface.

As for the monocular information source, we have chosen to use shading, where shading is the
change in image intensity due to the orientation of the surface relative to a light source. We use
this method because shading is most reliable when the albedo varies slowly across the surface;
this is the natural complement to intensity correspondence, which requires quickly varying
albedo. The complementary nature of these two sources allows us to accurately recover the

surface geometry and material properties for a wide variety of images.

In contrast to our approach, traditional uses of shading information assume that the albedo is
constant across the entire surface, which is a major limitation when applied to real images. We
overcome this limitation by improving upon a method to deal with discontinuities in albedo
alluded to in the summary of Leclerc and Bobick [24]. We compute the albedo at each facet by
using the normal to the facet, a light-source direction, and the average of the intensities projected
onto the facet from all images. We use the local variation of this computed albedo across the
surface as a measure of the correctness of the surface reconstruction. To see why albedo variation
is a reasonable measure of correctness, consider the case when the albedo of the real surface is
constant. When the geometry of the mesh is correct, the computed albedo should be
approximately the same as the real albedo, and hence should be approximately constant across the
mesh. Thus, when the geometry is incorrect, this will generally give rise to variations in the
computed albedo that we can take advantage of. Furthermore, by using a local variation in the
computed albedo, we can deal with surfaces whose albedo is not constant, but instead varies

slowly over the surface.

Implementation. The triangulated 3-D mesh of vertices that represents a surface, S, is a

hexagonally connected set of vertices such as the one shown in Figure 6(a). The position of a

18

vertex v; is specified by its Cartesian coordinates (xj,¥j,2;)- The mesh can be deformed by
varying these coordinates to minimize an objective function that includes terms derived from

stereo and shading information. Its state vector § is the vector of all x,y, and z coordinates.

The stereo component of the objective function is derived by comparing the gray levels of the
points in all the images for which the projection of a given point on the surface is visible. It is
similar to the term proposed by Wrobel [22]. As shown in Figure 6(b), this comparison is done
for a uniform sampling of the surface. This method allows us to deal with arbitrarily slanted

regions and to discount occluded areas of the surface.

The shading component of the objective function is computed by using a method that does not
invoke the traditional constant albedo assumption. Instead, it attempts to minimize the variation in

albedo across the surface, and can therefore deal with surfaces whose albedo varies slowly. This

term is depicted by Figure 6(c).

The stereo term is most useful when the surfaces are highly textured. Conversely, the shading
term is most reliable where the surfaces have little or no texture. To account for this phenomenon,
we take the complete objective function, E(S), to be a weighted average of these two components

where the weighting is a function of texture within the projections of individual facets.

In general, E(.S) is a highly nonconvex function of the vertex positions. To minimize E(.5), we
use the “snake-type” [5] optimization technique of Section 2.2. We define the total energy of the

mesh, Er(S), as
Er(S) = Ep(S) + E(S) (14)

where Ep(S) is a regularization term analogous to the one of Equation a-3. In practice, we take
‘Ep to be a measure of the curvature or local deviation from a plane at every vertex. Because the

mesh is regular, Ep can be approximated by using finite differences as a quadratic form [25]
Ep(S) = 1/2(XTKX +YTKY +Z'KZ), (15)

where XY, and Z are the vectors of the x,y, and z coordinates of the vertices, and K is a sparse
and banded matrix. This regularization term serves a dual purpose. First, as before, it
“convexifies” the energy landscape when Ap is large and improves the convergence properties of
the optimization procedure. Second, in the presence of noise, some amount of smoothing is

required to prevent the mesh from overfitting the data, and wrinkling the surface excessively.

To speed the computation and prevent the mesh from becoming stuck in undesirable local

minima, we typically use several levels of mesh sizes—three in the example of Figure 2(b)—to

19

perform the computation. We start with a relatively coarse mesh that we optimize. We then refine
it by splitting every facet into four smaller ones and reoptimizing. Finally, we repeat the split and

optimization processes one more time.

3 ENFORCING CONSISTENCY

We now turn to the enforcing of geometric and consistency constraints on the multiple objects

that may compose a complex site.

A traditional way to enforce such coﬁstrajnts is to add a penalty term to the model’s energy
function for each constraint. While this may be effective for simple constraints, this approach
rapidly becomes intractable as the number of constraints grows, for two reasons. First, it is well
known that minimizing an objective function that includes such penalty terms constitutes an
ill-behaved optimization problem with poor convergence properties [26, 27]: the optimizer is
likely to minimize the constraint terms while ignoring the remaining terms of the objective
function. Second, if one tries to enforce several constraints of different natures, the penalty terms
are unlikely to be commensurate and one has to face the difficult problem of adequately weighing

the various constraints.

Using standard constrained optimization techniques is one way of solving these two problems.
However, while there are many such techniques, most involve solving large linear systems of
equations and few are tailored to preserving the convergence properties of the snake-like
approaches of Sections 2.2 and 2.4. Exceptions are the approach proposed by Metaxas and
Terzopoulos [28] to enforce holonomic constraints by modeling the second-order dynamics of the

system and the technique proposed by Amini et al. [29] using dynamic programming.

Here, we propose a new approach to enforcing hard constraints on our snakes without undue

computational burden while retaining their desirable convergence properties.

3.1 Constrained Optimization in Orthogonal Subspaces

Formally, the constrained optimization problem can be described as follows. Given a function f
of n variables S = {s1,52,..,5.}, we want to minimize it under a set of m constraints
C(S) = {c1,¢2,..,cm} = 0. That is,

minimize f(S) subject to C(S) =0 . (16)

20

While there are many powerful methods for nonlinear constrained minimization [27], we know of
none that are particularly well adapted to snake-like optimization: they do not take advantage of
the locality of interactions that is characteristic of snakes. We have therefore developed a robust
two-step approach [30, 7] that is closely related to gradient projection methods first proposed by

Rosen [31] and can be extended to snake optimization. .

Solving a constrained optimization problem involves satisfying the constraints and minimizing
the objective function. For our application, it has proved effective to decouple the two and

decompose each iteration into two steps:

1. Enforce the constraints by projecting the current state onto the constraint surface. This
involves solving a system of nonlinear equations by linearizing them and taking Newton

steps.

2. Minimize the objective function by projecting the gradient of the objective function onto
the subspace tangent to the constraint surface and searching in the direction of the

projection, so that the resulting state does not stray too far away from the constraint surface.

Figure 7 depicts this procedure. Let C and § be the constraint and state vectors of Equation 16 and
A be the n x m Jacobian matrix of the constraints. The two steps are implemented as follows:

1. To project S, we compute dS such that C(S +dS) = C(S) +A'dS = 0 and increment S by
dS. The shortest possible dS is found by writing dS as AdV and solving the equation
A'AdV = —C(S).

2. To compute the optimization direction, we first solve the linear system
AT(S)A(S)A = AT (S)Vf and take the direction to be V f — AL. This amounts to estimating
Lagrange multipliers, that is, the coefficients that can be used to describe V f as closely as

possible as a linear combination of constraint normals.

These two steps operate in two locally orthogonal subspaces, in the column space of A and in its
orthogonal complement, the null space of AT . Note that AT (S)A(S) is an m x m matrix and is
therefore small when there are more variables than constraints, which is always the case in our

application.

This technique has been used to enforce the geometric constraints in the example of Figure 5.
Furthermore, it can be generalized to handle inequality constraints by introducing an “active set

strategy.” The inequality constraints that are strictly satisfied are deactivated, while those that are

21

L i 'l ' A i o " L " NP,

-1.5 -1 -0.5 0.5

Figure 7: Constrained optimization. Minimizing (x—0.5)2 4 (y—0.2)* under the constraint that
(x/2)% +y? = 1. The set of all states that satisfy the constraint C(S) =0, i.e. the con-
straint surface, is shown as a thick gray line. Each iteration consists of two steps: or-
thognal projection onto the constraint surface followed by 2 line search in a direction
tangent to the surface. Because we perform only one Newton step at each iteration, the
constraint is fully enforced after only a few iterations.

violated are activated and treated as equality constraints. This requires additional bookkeeping
but does not appear to noticeably slow down the convergence of our constrained-optimization

algorithm.

3.2 Constraining Snake Optimization

We could trivially extend the technique of Section 3.1 to the refinement of smooth curves and
surfaces by taking the objective function f to be the total energy Zr of Equation a-3. However,
this would be equivalent to optimizing an unconstrained snake by using gradient descent as
opposed to performing the implicit Euler steps that so effectively propagate smoothness

constraints.

In practice, propagating the smoothness constraints is key to forcing convergence toward
desirable answers. When a portion of the snake deforms to satisfy a hard constraint, enforcing
regularity guarantees that the remainder of the snake also deforms to preserve it and that

unwanted discontinuities are not generated. This is especially true in our application because

22

many of the constraints we use can be satisfied by moving a small number of vertices, thereby
potentially creating “kinks” in the curve or surface that subsequent optimization steps may not be

able to remove without getting stuck in local minima.

Therefore, for the purpose of optimizing constrained smooth snakes, we decompose the second
step of the optimization procedure of Section 3.1 into two steps. We first solve the unconstrained
Dynamics Equation (Equation a-6) as we do for unconstrained snakes. We then calculate the
component of the snake step vector—the difference between the snake’s current state and its
previous one—that is perpendicular to the constraint surface and subtract it from the state vector.

The first step regularizes, while the second prevents the snake from moving too far away from the

constraint surface.

As in the case of unconstrained snakes, 0., the viscosity term of Equation a-6, is computed
automatically at the start of the optimization and progressively increased as needed to ensure a

monotonic decrease of the snake’s energy and ultimate convergence of the algorithm.

Let S be the snake’s state vector as described in Sections 2.2 and 2.4. An iteration of the

optimization procedure involves the following three steps:

1. Take a Newton step to project S;_1, the current state vector, onto the constraint surface.
S,_y — S,_1 +AdV where ATAdV = —C(S;-1) .

If the snake’s total energy has increased, back up and increase viscosity.

2. Take a normal snake step by solving

J0E

Ke+ol)S, = oS-1— ==
(Ks+od)S; ! aSs,_l

3. Ensure that dS, the snake step from S, to Sy, is in the subspace tangent to the constraint

surface.
S, — S, — AL where A"AL = AT(S, —S,_1) ,

so that the snake step dS becomes

ds (S, —AL) — S5,
= ATdS = 0.

23

3.3 Multiple Snakes

Our technique can be further generalized to the simultaneous optimization of several snakes under
a set of constraints that bind them. We concatenate the state vectors of the snakes into a
composite state vector S and compute for each snake the viscosity coefficient that would yield
steps of the appropriate magnitude if each snake was optimized individually. The optimization

steps become

1. Project S onto the constraint surface as before and compute the energy of each individual
snake. For all snakes whose energy has increased, revert to the previous position and

increase the viscosity.
2. Take a normal snake step for each snake individually.

3. Project the global step into the subspace tangent to the constraint surface.

Because the snake steps are taken individually, we never have to solve the potentially very large
linear system involving all the state variables of the composite snake but only the smaller
individual linear systems. Furthermore, to control the snake’s convergence via the progressive
viscosity increase, we do not need to sum the individual energy terms. This is especially
important when simultaneously optimizing objects of a different nature, such as a surface and a
linear feature, whose energies are unlikely to be commensurate so that the sum of these energies

would be essentially meaningless.

In effect, the optimization technique proposed here is a decomposition method and such methods
are known to work well [27] when their individual components, the individual snake

optimizations, are well behaved, which is the case here.

4 CONSISTENT SITE MODELING

We demonstrate the ability of our technique to impose geometric constraints on 2-D and 3-D
deformable models using real imagery. More specifically, we address the issue of optimizing the
models of 3—D linear features such as roads, ridgelines, rivers, and the terrain on which they lie
under the constraint that they be consistent with one another. In Figures 1 and 8 we present two
such cases where recovering the terrain and the roads independently of one another leads to

inconsistencies.

Because we represent the terrain as a triangulated mesh and the features as 3-D polygonal

approximations, consistency can be enforced as follows. For each edge ((x1,y1,21), (x2,y2,22)) of

24

Figure 8: Building a site model. (a,b,c) Three images of a site with roads and buildings. (d) A
rough sketch of the road network and of one of the buildings. (e) Shaded view of the ter-
rain with overlaid roads after independent optimization of each. Note that the two roads
in the lower right corner appear to be superposed in this projection because their recov-
ered elevations are inaccurate. () Differences of elevation between the optimized roads
and the underlying terrain. The image is stretched so that black and white represent
errors of minus and plus 5 meters, respectively.

the terrain mesh and each segment ((x3.¥3.23). (xa.y4.24)) of a linear feature that intersect when
projected in the (x.y) plane. the four endpoints must be coplanar so that the segments also

intersect in 3—D space. This can expressed as

Xy X2 X3 X4

which yields a set of constraints that we refer to as consistency constraints.

In Figures 2 and 9, we show that the optimization under the constraints of Equation 17 avoids the

discrepancies that result from independent optimization of cach feature.

[n the example of Figure 2. the “ridge snake™ attempts Lo maximize the average edge gradient

-
b= (=

along its projections in all three images. In the case of Figures 8 and 9, the roads are lighter than

25

Figure 9: Recovering the 3-D geometry of both terrain and roads. (a) Shaded view of the terrain
with overlaid low-resolution roads after optimization under consistency constraints. (b)
Corresponding differences of elevation between features and underlying terrain. The
image is stretched like the one of Figure 8(f). Note that only the roof of the building 1s
significantly above the terrain. (c¢) The roads modeled as ribbons overlaid on the terrain.
(d,e.f) The optimized roads overlaid on the original images.

the surrounding terrain. At low resolution, they can effectively be modeled as white lines, and the
corresponding snakes attempt to maximize image intensity along their projections. At higher
resolution, they are better modeled using the 3-D ribbon snakes of Section 2.2. We also introduce
a building and use its base to further constrain the terrain. Figures 9(a,b) depict the result of the
simultaneous optimization of the terrain and low-resolution roads. By supplying an average width
for the roads. we can turn the lines into ribbons and reoptimize terrain and features under the

same consistency constraints as before, yielding the result of Figure 9(c).

The case of rivers is somewhat more complex. Like roads, rivers are represented as linear features
that must lie on the terrain. But, in addition. the system must ensure that they flow downhill and at
the bottom of valleys. By introducing the active set strategy described at the end of Section 3.1,

we have been able to impose such constraints and to generate the more complete site model of of

Figure 10.

These examples illustrate the ability of our approach to model different kinds of features in a

common reference framework and to produce consistent composite models.

(b)

Figure 10: Composite model. (a) Shaded view of the recovered model. The drainage pattern
appears as dark lines, the roads as white lines. (b) Texture mapped view.

5 CONCLUSION

We have presented object modeling techniques for 2-D and 3-D linear features and 3-D surfaces
that rely on parametric models and are extensions of traditional snakes. We have shown that we
can generate consistent models of complex sites using a constrained optimization method that

allows us to enforce hard constraints on these deformable models at a low computational cost.

We believe that this last capability will prove indispensable to automating the generation of
complex object databases from imagery, such as the ones required for realistic simulations or

intelligence analysis. In such databases, the models must not only be as accuratc—that is, true to

27

the data—as possible but also consistent with each other. Otherwise, the simulation will exhibit
“glitches,” and the image analyst will have difficulty interpreting the models. Because our
approach can handle nonlinear constraints, in future work we will use it to implement more
sophisticated constraints than the simple geometric constraints presented here. When modeling
natural objects, we intend to take physical laws into account. For example, rivers flow downhill
and at the bottom of valleys; these characteristics should be used when modeling both the river
and the surrounding terrain. In addition, when modeling man-made objects, we intend to take
advantage of knowledge about construction practices, such as the fact that roads do not have

arbitrary slopes.

We hope that the technique presented in this paper will eventually form the basis for a suite of
tools for modeling complex scenes accurately while ensuring that the model components satisfy

geometric and semantic constraints and are consistent with each other.

ACKNOWLEDGMENTS

This article surveys techniques that have been developed in collaboration with Yvan Leclerc and

Tom Strat. We wish to thank them for their support, ideas and advice.

28

A APPENDIX: EVALUATING THE EFFECTIVENESS OF MBO

We have chosen to measure the amount of effort expanded by the human analyst by the number of
mouse-clicks and the amount of mouse-travel required to achieve a desired answer. We feel that
this is a better measure than, for example, actual computation times because it truly reflects the
amount of human interaction and does not depend on the speed of the computer being used.

We first briefly describe the code instrumentation that was required to perform the experiments

and then report our results.

a.1 Instrumenting RCDE

We have developed and installed code that captures low-level information from the RCDE user
interface about individual actions taken by the analyst. Every mouse-motion associated with
making adjustments to object parameters, and every mouse click is captured into an event history.

The following information is recorded:

e Object Adjustment Events:

object ID
— event start time

adjustment type, for example vertex-xy, vertex-z, or vertex-width

2—-D world ID

zoom level

sequence of time deltas and mouseﬁ-position deltas of the form (delta-t dx dy)

e Mouse-Click Events:

object ID

event start time

event ID (for example: zoom-in, zoom-out, recenter, drop-z)

— 2-D world ID

zoom level

mouse 2-D world position

29

This event history is then summarized by a small number of meaningful numbers. Among them

are

number of mouse-clicks

number of mouse-moves

total distance mouse moved during adjustments

total time in adjustment events

total time in fine adjustments

We have also implemented a metric to estimate the precision of an extracted road by comparing
the centerline of the extracted road to the ground truth centerline. For each vertex of the extracted -
road, the distance to the nearest centerline point of the ground truth centerline is computed. The

data is reduced to the following two numbers:

e Mean vertex to ground truth distance

e Maximum vertex to ground truth distance

These seven numbers appear in the figures Section a.2.

a.2 Experimental Results

We used images such as the 7000 x 7000 one shown in Figure 11 to perform our experiments and
chose a set of road segments to be modeled as accurately as possible. We compared four

approaches to road delineation:

Hand Hand-tracing using the RCDE interface but neither snakes nor road tracker.

Tracker Using SRI’s road tracker [32] to provide the initial sketch in the full-resolution image

and then refining it using a ribbon snake [33].
Snakel Sketching the road using the full resolution image and refining it using a ribbon snake.

Snake2 Sketching the road using a half-resolution version of the image, refining it using a ribbon

snake first at half resolution and then at full resolution.

30

In all cases we used the system’s default parameter settings and allowed the user to manually
refine the automatically generated results to produce satisfactory delineations. The bar graphs that
appear in Figures 12 and 13 are labeled “hand,” “tracker,” “snakel,” “snake2.”

We used the hand-traced versions of the roads as our references and the metric discussed above to
evaluate the quality of the delineations produced by the three semiautomated approaches. As
shown in Figure 12, the results are virtually indistinguishable in terms of average distance,

whereas the “tracker” approach does better in terms of maximum distance.

Figure 13 depicts the amount of effort required by each approach, as measured by the number of
mouse-clicks and the amount of mouse-travel. The tracker approach appears to be very effective
and yields at least a sixfold improvement on all counts except the total number of mouse clicks.
This occurs because starting and stopping each operation—automated sketching and snake
refinement—require several clicks. This number could be drastically reduced by defining
Common-Lisp methods that sequentially perform all these operations with a single mouse-click.

The snake2 approach is almost as effective but requires more effort to provide the initial sketch.
This problem could alleviated by using Ziplock Snakes[34] instead of traditional snakes.

For all three semiautomed methods, however, a large portion of the human interaction goes into
specifying the width of the road, as the current tools have no way of computing it. Therefore,

methods to compute the width of a road given only its centerline would be extremely valuable and

should be the object of future research.

In short, by further improving the interface and developing a width-computing algorithms, we
should be able to turn the current sixfold reduction of effort into a tenfold to hundredfold one.

31

Figure 11: An image with two overlaid roads.

30

25

20

hand tracker, . snakel snake?2 hand tracker,, \snakel snake?2
(a) (b)

Figure 12: Distance to hand-entered roads. (a) Average distance difference (b) Maximum dis-
tance difference. Because the hand-entered results are taken to be the reference, the
corresponding distances are zero.

32

hand

wacker snakel snake2

()

g B B 8 §

g

8

hand tracker

hand

tracker

snakel

(c)

snake2

1000

g 3 8

hand

g g8 &8 8 8

g

tracker _ snakel snake2

snakel snake2

tracker snakel

(e

snake2

Figure 13: Amount of effort. (a) Number of object clicks. (b) Number of mouse moves. (©)
Total mouse distance. (d) Total mouse move time. (e) Total mouse move time for fine

adjustments.

33

34

B ZIPLOCK SNAKES

Authors: W. Neuenschwander and P. Fua and L. Iverson and G. Székely and O. Kiibler

To appear in the International Journal of Computer Vision.

1 INTRODUCTION

(a) (b) (d)

Figure 14: Outlining facial features. (a) A face image with low contrast contours. (b) Five sets of
initial points, each denoted by a different symbol. Four of them are pairs of end points
while the fifth is a shown as a set of circles. (c) The contours delineated by Ziplock
Snakes. (d) The initial delineations that must be supplied to achieve the same result

using traditional snakes.

In recent years, snakes have emerged as a powerful tool for semiautomated object delineation.
Originated by Terzopoulos, Kass, and Witkin [35, 36] they have since given rise to a large body of

literature ([6, 37, 38, 39] among many others) that explores theoretical and implementation issues

as well as new applications.

In most of these papers, however, it is assumed that the initial position of the snake s relatively
close to the desired solution. While this is a reasonable assumption for applications such as

motion tracking [40, 41], it is inappropriate when delineating complex objects from scratch.

Here, we describe a snake approach that allows a user to specify only a few discrete points
through which the contour must pass. Our efforts are aimed at simplifying the often repetitive
tasks associated with semi-automatic image segmentation. In particular, we intend to eliminate
the need to outline the desired structure precisely, that is, to perform a painstaking, almost
complete, manual segmentation. As illustrated in Figure 14, considerably fewer control points are

needed than for conventional implementations which we refer to as traditional snakes.

Traditional snakes are polygonal curves to which is associated an objective function that

35

combines an “image term” measuring either edge strength or edge proximity, and a regularization
term minimizing for tension and curvature. The curve is deformed so as to optimize the objective
and, as a result, to match the image edges. The optimization is typically global and takes edge
information into account along the whole curve simultaneously. When the snake’s initial position
is far away from the desired result, the snake often gets stuck in an undesirable local minimum
incorporating irrelevant edge information. The minimization problem is solved by treating the
snake as a physical system evolving under the influence of a potential that is the sum of an
objective function and a dissipation term that enforces convergence. To ensure the convergence of
such a local minimization approach, one must supply an initial estimate that is close to the desired

answer.

By contrast, in our approach, the optimization progresses from the end points towards the center
of the snake, thereby effectively propagating edge information along the curve. The user-supplied
end points and the automatically computed edge gradients in their vicinities serve as anchors.
They are first used to compute, without using the image potential, an initial state that is
approximately correct in each anchor’s vicinity. The image term is then “turned on” progressively
from the snake’s extremities toward its middle section. Still using the end points as anchors, the
snake’s position is iteratively recomputed until the image term is fully turned on. As a result, the
snake is progressively clamped onto an image contour so that it smoothly connects the two end
points and has the right orientation at these points. This behavior is analogous to the closing of a

ziplock, hence the name of our snakes.

The Ziplock Snakes presented here are similar to the Growing Snakes proposed by [42]. These
snakes are initialized with a single point and minimal length. Subsequently the growing snake is
slowly extended at the endpoints while the dynamical process iterates. With both Growing and
Ziplock snakes, the model information that must be fed into the optimization procedure is
reduced to a bare minimum. The model is initially correct at one or two locations respectively,
and both methods then try to keep the evolving snake on the object boundary during the
optimization. As a result, these snakes avoid getting trapped by local minima and can be used in
situations where there are a number of strong nearby features, even though this task is difficult or
impossible to perform reliably using Traditional Snakes. However, because we solve a boundary
value problem—as opposed to the initial value problem solved by Growing snakes—our
optimization scheme need only be controlled by two image-independent parameters that are

natural and easy to set, thus making the snake’s behavior very predictable.

The Growing Snake approach, proposed by [42] is based on an open snake model with free

extremities. Since this is the most similar approach to ours we will sketch their algorithm. The

36

outlining process starts with a short snake which may already lie on a contour. The snake’s

boundary conditions are set in such a way that both end points are free. At the end points, two

new snake segments are attached, hence increasing the snake’s length. This new snake is then

subject to a fixed number of traditional optimization steps. A post-processing step is then applied

to the resulting snake which may cut off those parts of the snake’s head and tail which are not -
aligned with the image contour to be detected. The optimization and post-processing steps are

then repeated until both the head and tail are stopped by the post-processing. These steps depend

on relatively arbitrary image-based thresholds. To improve the control mechanism for the growing
process, Henricsson and Neuenschwander [43] have proposed to combine growing snakes with
pre-computed image feature maps derived from energy filters. Here we overcome this difficulty

by treating the two extremities of the snake as two growing snakes that stop when they meet.

We first review the properties of traditional snakes and introduce Ziplock Snakes. We then
compare their respective behaviors, and present results on both synthetic and real images to
demonstrate the improved performance of ziplock snakes for initializations that are far away from

the desired result. Finally, we propose an extension to ribbon-like structures to facilitate

interactive road segmentation.

2 TRADITIONAL SNAKES

The original snakes [36] are modeled as time-dependent 2-D curves defined parametrically as

V(S,[) = (x(sat)7y(s’t))|0§s§l ’

where s is proportional to the arc length, ¢ the current time, and x and y the curve’s image
coordinates. The snake deforms itself as time progresses so as to minimize an image potential
E[(v), with

1
Ei(%) = — /0 P(¥(s, 1)) ds

where P(¥(s,1)) is a function of the image. One typical choice is to take P(¥(s,1)) to be equal to

the magnitude of the image gradient, that is
P(¥(s,1)) = [VI(¥(s,1))] ,

where [is either the image itself or the image convolved by a Gaussian kernel.

Whatever the choice of P, Ej(V) is typically not a convex functional. To overcome this problem,

Terzopoulos et al. [44] has proposed to introduce a regularization term Ep(V) that is convex and

37

to minimize a total energy term E(¥) that is the sum of E;(V) and Ep(V). Using the elastic rod
model, Ep(V) is taken to be

2
ds, (18)

2

25(s
+B(s) |20

(s, 1)
os ds?

1
Ep(7) = % / a(s)
0

where o(s) and (s) are arbitrary functions that regulate the curve’s tension and rigidity. In the
implementation described below 0i(s) and f(s) are taken to be constant and supplied by the user.
We have shown previously [6] that constant o and B can be chosen in a fairly image-independent

way.

From variational calculus [45] it is well known that if ¥(s) minimizes E = Ep+E;andis
sufficiently regular, that is at least C*(0, 1), then it must be a solution of the set of two coupled

Euler differential equations

: v(s 2 2y

where v(s,) stands for either x(s,) or y(s,). Note that, in order for this equation to have a
unique solution [46], one must specify boundary conditions such as the values and derivatives of

v(s,t) fors=0and s = 1.

Discretizing Equation (19) using finite differences yields the linear system
K-V=F (20)

where V stands for the vector of either x or y coordinates, K is the stiffness matrix [44] and Fy are
the derived image forces. K is not invertible and these equations cannot be solved directly. The
Euler differential system of Equation (19) has a unique solution only when boundary conditions
are supplied. Without them, it is under-constrained. In Section 3, we show how we can solve this

system of equations by using the boundary conditions to turn K into a regular matrix.

Traditional snakes as proposed by [36, 39] for example are only effective when the initial position
of ¥ is close to the desired solution. However, they are very sensitive to initial conditions. They
can easily get caught in local minima when the desired outline presents large concavities that
force the snake to extend itself or when there are other edges in the vicinity of the desired one that
may “catch” the snake as shown in Figure 15. Furthermore, from a user’s point of view, there is
not always a simple intuitive way of defining how close an initial state has to be in order to detect

the desired object boundary. Figure 16 illustrates this problem.

38

()

(b)

Figure 15: Sensitivity of traditional snakes to nearby contours. (a) Different initializations: the
snake is initialized using a polygon with an increasing number of vertices. (b) The
corresponding results: the fact that the two objects are lying close to each other forces
the user to outline the desired contour segment precisely. If the snake touches the
influence region of a nearby object it will get stuck on the wrong contour.

This is to be expected since the applied traditional optimization algorithm uses a “viscosity” term
to stabilize the convergence process along the whole snake. This effectively constrains the result

to be the local minimum of the objective function that is in some sense “closest” to the initial

position.

3 ZIPLOCK SNAKES

To improve upon traditional snakes’ convergence properties, we have developed a boundary-value
method with acts like “ziplock” plastic bags. The user specifies end points in the vicinity of a
clearly visible edge segment. The system first optimizes the location of the user-supplied points
on the gradient image to ensure that they are indeed good edge points, and then calculates the
edge directions at these points using both the initial image and its gradient. These anchor

elements then become fixed boundary conditions for the dynamical system.

We use the anchor elements to derive an initial position for the snake independently of the image
under consideration. This initial state will, in general, be close to the desired answer in the
vicinity of the snake end points but nowhere else. We will therefore “turn on” Fy, the image
forces of Equation (20), only near the end-points and compute a new position for the snake using
the same boundary conditions as before. A longer part of this new solution will be closer to the
actual image edge than before; the image forces can thus be turned on in this longer part and the
snake’s position recomputed. By iterating this process, we eventually turn on the image forces

over the whole length of the snake, thereby achieving the propagation of the edge information

39

from the anchor points to the snake’s middle and the progressive ziplock-style clamping. This
approach is closely related to perturbation theory [47]: we start with an unperturbed solution of
our minimization problem and progressively perturb it by considering more and more of the

image forces.

@ -

(b)

Figure 16: Ill-conditioned behavior of the traditional snakes with respect to initialization. (a)
Slightly different initializations: the snake is initialized using a polygon with five ver-
tices. While the first, second, fourth, and fifth vertices are the same for all six situations,
the the third vertex moves closer to the shape. (b) The corresponding results: when the
third vertex is close enough to the object’s border, the snake is able to detect the correct
contour (6th image pair). However, it is not intuitively obvious what the threshold is.

In the remainder of this section, we first discuss the use of boundary conditions to solve our
minimization problem. We then derive our initial unperturbed snake position from the end points
and finally we present the optimization schedule that defines the gradual “turning on” of the

image forces.

3.1 Solving the Minimization Problem with Boundary Conditions

As discussed in Section 2, minimizing the snake’s energy amounts to solving the Euler
differential system of Equation (19) which leads, after discretization, to the semi-linear system of
Equation (20). By fixing the curve’s end points and specifying the curve’s tangent at those points,

the system of equations reduces to
K*-V*=F., 2D

where V* stands either for the n — 4 vector X* = (x2,...,%,-3) or y* = (¥2,..-,¥n—3), and K* is an
(n —4) x (n — 4) pentadiagonal stiffness matrix that is invertible. For additional detail we refer
the interested reader to [48]. To our knowledge, other sets of boundary conditions have been
implemented by the following authors: e.g. free extremities [36, 49], fixed extremities [50], and

periodic boundary conditions for closed snakes [37, 39].

40

Since Fyj. depends on the snake’s current position, the system is still only semi-linear and cannot,

in general, be solved in closed form. Instead, one must use an iteration scheme that can be

concisely rewritten as

kvl =FR. (22)

vr=y*l-1]

where ¢ is the iteration index.

3.2 Initialization

To successfully optimize the snake, we must start from an initial position that is approximately
correct in the neighborhood of the end points. The easiest way to achieve this result is to solve the
homogeneous equations that correspond to the system of Equation (19). By construction, this
solution has the specified tangent at the end points and is close to the right answer near these
points. As discussed in Section 2, we take a. and f to be constant, and the homogeneous system

becomes
d?v(s) Ld*v(s) _

_.a ==
ds? g ds*
where v stands for either x or y and 0 < s < 1. For both coordinate functions x(s), y(s), the

analytical solution of the Equation (23) is of the form

0 | (23)

- /¢s g
v(s) =C1+Cas+Cae ‘/% + C4e+\/g (24)
where Cy, ..., C, are integration constants that can be determined from the four boundary

conditions {v(0) , v(1) , v/(0) , V(1)}. The solution of Equation (23) depends only on the ratio
w= \/OL_/B and the boundary conditions [35]. The computation displayed above ensures that the
initial estimate is already close to the correct solution in the neighborhood of both end points. The
same goal could have been achieved by using other interpolation techniques as well, e.g.
Bézier-Curves. However, the computation performed here is part of our optimization scheme
presented in Section 3.3: Computing Solution (24) of Equation (23) is equivalent to executing a
first optimization step. Computing the initial snake position is therefore appealing it is achieved

within the same mathematical framework as the rest of the computation.

When interactively defining the snake’s end points, which we will subsequently refer to as the
head and tail, the user need not be very accurate. Instead, we can ask him to choose the head and
tail close to dominant edge fragments. The system then performs a linear search to find the true
edge location in the near neighborhood of the selected points. The snake tangent at its head and

tail is then computed by optimizing the orientation of a short straight-line snake.

41

While the tangent direction at the end points can be computed, its orientation may be ambiguous.
By default, the boundary conditions are chosen so that the initial snake defines acute angles with
the line joining the two end points. Since this heuristic may fail, the interface provides the user

with the possibility of flipping the orientation at both ends.

3.3 Optimization Procedure

We start the optimization of the energy term by defining the initial snake as the solution of the
homogeneous differential system of Equation (23). At this stage the snake “feels” absolutely no
external image forces. Assuming that the user selects both end points near dominant edge
fragments in the image, this initialization ensures that the snake already lies close to its optimal
position at both ends. During the ongoing iterative optimization process the image potential P is
turned on progressively for all the snake vertices, starting from the extremities. We distinguish
between passive and active snake nodes, depending on whether the potential force field Fy. is

turned on for that vertex or not.

As illustrated by Figure 17, we define the force boundaries as the furthest active vertices from the

end points. These boundaries approach each other during the ongoing optimization process. The

Force boundaries

Hond \ fl’assivy :
Active — i

Tail

Figure 17: Schematic of the Ziplock Snake during optimization. A Ziplock Snake, fixed at Head
and Tail, consists of two parts the active and the passive vertices. These areas are
separated by moving force boundaries. The active part of the snake is divided up into
two segments marked as (h) and (t) respectively.

simplest way to optimize the snake would be to gradually move the force boundaries from the
snake’s head and tail towards its center and solve Equation (22) for each new position. However,

because Equation (22) is only semi-linear, it cannot be solved in a single step.

42

Instead we use the following procedure. Each time, the force boundaries are moved, we
recompute the shape of the snake’s passive part by solving the homogeneous Euler Equation 23,
using the force boundaries and the active vertices on each side to supply the boundary conditions.
We introduce a viscosity term (s, t)—similar to the one used by traditional snakes [36]—for the

active vertices and iteratively solve the modified Equation (22): .

(K* +Y[t] I)- vl = ,Y[t] Vo etV IL . FJ*[,—n] (25)
q
where V* stands for either x* or
y* and
.
oP
-5 if V=x
* ax (x‘{"‘l],y‘["”)
V*[l-—l] = < aP
- 'a—- if V=y
\ y (x.[x—l]’y.[:—l])
The superscript [l denotes the iteration step and 1 is an indicator function for the vector y{’]
1;j=0for i#j
ly{:] € R-9%("=4) with forif Y{’] >0 (26)
* 0 otherwise

which has the form of a diagonal matrix.

The viscosity (s,) is initialized as ¥(s,0) =0 ,s € [0, 1] and recomputed each time the force
boundaries move so that the initial displacement of each vertex is on the average of a given
a-priori magnitude, typically 1 pixel (see [6]).'.For t = 0, Equation (25 yields the discrete version
of the differential Equation (23) with boundary conditions. Hence the computation of the initial
estimate (x*(, y*ONT s the first optimization step and fits therefore perfectly into the proposed

“ziplock” framework.

Each force boundary is moved individually but at most one vertex per iteration. A force boundary
is advanced when we can verify that the motion of the corresponding active section has stabilized.
We do this by testing at each iteration step whether the boundary vertex has entered a convergence
region well-described by the exponential model Al =2+axe b Taking three measured values

2%, 211, 71 the three model parameters Z,a, b are uniquely determined. Any three non-collinear

43

Figure 18: The effect of initialization for ziplock and traditional snakes. The rows show the evo-
lution for different snakes from the initial state in the first column. (a) Evolution of
a ziplock snake. The circles indicate the movement of the force boundaries during
optimization. (b) Traditional snake with same initialization. (c) Traditional snake ini-

tialized in three additional points.

coordinates will fit this model giving the convergence point

0112} _ {1111

=

2[0] - 22[1] + 2[2]

(27)

To verify convergence, we examine the five most recent positions of the boundary vertex V;/. We

fit three time samples to the model yielding the according convergence estimates as shown in the

table below.
3 time samples Vk*[z]’ Vk*[r—l]’ Vk*[:—z} Vk*[t_l]’ V;['_z], V;[r—3] V:[t—z]’ Vk*[t—3]7 Vk*It—4]
convergence estimates V,: 1’] ;:[2'] Vk*,[Bl]

If these three estimates fall within a circle of radius smaller than 1/4 of a pixel then we take this

to indicate convergence and advance the corresponding force boundary.

Once both force boundaries have met and all vertices are active, we double the viscosity term y

for each vertex at every 10th iteration. As soon as the average motion of the whole snake falls

below 1/10 pixel the optimization process is stopped.

44

Figure 19: Evolution of a ziplock snake on the synthetic image of Figure 15. The circles denote
the farthest vertices away from the end points for which the image forces are turned
on, that is the force boundaries of Section 3.3.

(a)

(b)

(c)

(d)

Figure 20: Compared behaviors of ziplock and traditional snakes on an image of an apple. The
rows show the initialization and three stages of the optimization process for (a) a zi-
plock snake, (b) a traditional snake with the same initialization, (c) a traditional snake
with three vertices, (d) a traditional snake with seven vertices.

45

4 DISCUSSION

We discuss and compare traditional and ziplock snakes with regard to initialization and contour
following capabilities. Let us recall the basic assumption underlying the mathematical theory of
deformable elastic models. The formalism is developed for small excursions from the stationary
configuration for which internal and image forces are in equilibrium. The domain of validity of
the mathematical model must be respected if convergence from an initial state to a representative
solution is to be achieved. In traditional snakes, optimization is done for the whole contour
simultaneously implying that the initialization has to be close to the equilibrium configuration
along its whole length as well. By contrast, ziplock Snakes are initialized on single points lying
on well defined edge segments and the optimization is initially confined to the close vicinity of
these points. The small excursion assumption is thus satisfied at the beginning and remains
fulfilled during the locking operation, at least as long as head and tail of the snake are
progressively clamped onto well defined contour segments. Under these conditions, ziplock
Snakes behave just like Growing Snakes. Once the contour becomes ill defined, however,
Growing Snakes have to resort to stopping rules to decide whether to proceed or to stop since the
contour is regarded too washed out to be traced further. Finding universally applicable rules has
proved notoriously difficult{42, 43]. With ziplock Snakes, the decision to trace or interpolate faint
parts of contour is delegated to the user and the astounding capabilities of the visual system.
Picking two initial points means they are deemed connected, undisputedly an entirely pragmatic
approach. We believe, however, it optimally combines the strengths of computer and human

resulting in an easy-to-use interactive tool.

We turn to the contour-following capabilities which are different for traditional and ziplock
snakes. The underlying reason is the different influence of the regularization term during
optimization. In traditional snakes, regularization and image forces are always active from the
beginning, and along the full length of the snake. As the snake evolves during optimization, the
regularization term tends to force it to shrink and to prevent it from expanding to follow the
contour as the image forces would require. This effect was recognized and addressed early in the
history of snakes, e.g. by adding an expansion term to the mathematical model as in the balloon
formalism[37]. In ziplock snakes the contour-following capabilities are governed by the interplay
of passive and active snake segments and the movement of the force-boundaries. Recall that the
image forces are turned-off between head and tail; the corresponding solution of the homogeneous
Euler equations is known exactly and analytically while the active segments—for which the small
excursion assumption is satisfied—are obtained via numerical optimization. After every
displacement of the force boundaries the connecting force-free snake-segment is recomputed and

grafted between the active segments. The length of this new passive part is essentially determined

46

by the updated (force-) boundary conditions; it can be shorter or longer than at the previous step.
Premature shrinkage of snake-segments far away from equilibrium and thus, strictly speaking,
still outside the domain of validity of the mathematical model will occur for poorly initialized

traditional snakes while ziplock snakes will successively develop the proper length.

The examples below illustrate this behavior. We use synthetic and real images of tutorial
character to compare the traditional snakes with our ziplock snakes and show that initialization of
the former must typically be much closer to the desired answer to achieve comparable results. For
a fair comparison, we use the same tension and rigidity parameters, o and [as defined in

Equation (18), for both kinds of snakes.

Figure 18 shows three sequences of snakes evolving on a synthetic image. The first row (a)
illustrates the behavior of our model. The ziplock snake can always be initialized with only two
points. During the iteration, the force boundaries move along the contour until they meet.
Sequence (b) illustrates the deficient behavior of the traditional snake initialized in exactly the
same way. The third sequence (c) shows the traditional snake now initialized by a polygon with
five vertices. These additional points are needed for traditional snakes to succeed. The ability of

ziplock snakes to outline cavities and to distinguish between nearby objects is further illustrated

by Figure 4.

Figure 20 compares the performance of ziplock and traditional snakes, using an‘image of an apple.
Although the object looks quite simple, the segmentation problem is surprisingly treacherous.
Shadows and illumination effects produce edges having nothing to do with the apple’s outline.
Sequence (a) shows the initialization and optimization of a ziplock snake. The two end points are
selected on the apple’s outline and the snake eventually deforms to the correct shape, even
though, depending on the choice of o and B, the initial guess may be very far from the final
answer. Sequence (b) illustrates the bad performance of the traditional snake model initialized
using only the same two end points: the snake gets stuck on the bright specular reflection on the
apple’s skin. In sequence (c), the initialization is closer to the desired answer but the snake is still
attracted by other salient features near the contour and fails to outline the apple. To achieve this i
result using a traditional snake, one must supply the almost “correct” polygonal approximation of
Sequence (d). It is so close to the desired answer that only slight smoothing occurs during the
evaluation, without any real position adjustment. In this case, the traditional snake acts only as a

regularization tool smoothing out the first-order discontinuities of the initialization.

47

5 RESULTS

The contour-following capability of Ziplock Snakes and Growing Snakes [42, 43] makes them
especially useful for segmenting scenes where the separation of nearby features is necessary.
Figure 21 illustrates, using the same apple image as before, how easily the contour of the apple
and its shadow can be separated. The first block of two images depicts the extraction of the
apple’s contour. To outline the shadow as shown in the second block, the initial points simply

have to be moved into its vicinity.

(a)

(b)

Figure 21: Detection of different image features by ziplock snakes. (a) Detection of the apple’s
outline. Some liberty can be used in placing the upper right initial point since there is
no danger of ambiguity in the automatic adjustment to nearby image structures. More
precision is required for the lower left initial point in order to avoid confusing apple
and shadow boundaries. (b) Detection of the projected shadow; the lower left initial
point is now closer to the shadow boundary.

Figure 5 shows that ziplock snakes can be used to delineate roads in an aerial image by using very
distant end points. Note, however, that our snakes can still become confused in the presence of
junctions. In the case of the curve drawn in the bottom left corner of Figure 5(b), there is a
secondary road that leaves from the main one and traps the snakes in an undesirable local
minimum. In practice, when such problems arise, our interface allows the user to add a new point

in the middle of the curve, thereby splitting it into two snakes.

Another mechanism for the user to interact with snakes and fix problems such as the one
described above is to allow him to use a mouse-controlled cursor to nudge the snake off the

48

Figure 22: Outlining roads in an aerial image. (a) Ziplock snake initializations. (b) Final results.
All the road edges are correctly outlined except the bottom left one. (c) The erroneous
result is corrected by adding one new control point.

unintended feature. Alternatively, we have extended our formulation of the snake equations to
include a term related to the length and direction of the vector from each snake vertex to the
mouse-cursor. In this way, we have simulated a magnetic force between the cursor and the snake,

which allows the user to push the curve in a desired direction.

To segment more complex shapes we need a simple way to sequentially define end points for
adjoining open snake fragments. We have implemented an interactive initialization tool that starts
the contour-finding process starts as soon as the user has clicked on two initial points.
Sequentially adding salient points will then extend the initial segment under immediate visual
control in a sort of contour-following rubber line process. This mechanism can also be utilized to
detect closed contours since the boundary conditions can be shared between neighboring snakes
to guarantee a smooth transition between them. Figure 23 illustrates this process on the
segmentation of a corpus callosum in an MR image. Note, how the correct outline is found by the

second segment in spite of its crossing over a wrong contour during the optimization phase.

Following [6], we have implemented a tool for interactive road delineation, called ribbon snake.
The model vector ¥ is augmented by a third component, the varying width w(s,t) of the road. For
the new model ¥(s,t) = (x(s.1),y(s,1), w(s, 1))T the expression for the deformation energy (18)
still holds. The width is subject to similar “tension” and “rigidity” constraints as the two
coordinate components. The ribbon forms the center of the road, while the assigned width defines
two curves that are the actual deforming road boundaries. Note that the image information is
taken into account along these two curves only. Figure 24 depicts the delineation of complete

road boundaries using the ribbon snake model.

49

Figure 23: Segmentation process of a corpus callosum (MR image slice turned by 90°). The
closed contour is built up by three open snakes linking three points supplied sequen-
tially by the user and denoted by circles. In the middle picture, the contour initially
overlaps the wrong edge; this has no adverse effect because, initially, its middle part is
inactive.

6 CONCLUSION

We have proposed a snake-based approach to semiautomated delineation that allows a user to
outline an open contour by specifying only very distant end points and allowing the computer to
propagate edge information from the extremities toward the center. Our approach presents three

main differences from more traditional snake implementations:

e It derives an appropriate set of boundary conditions from the image in order to constrain the

optimization process.

e It uses a schedule that allows the snake to take image information into account first only

near its extremities and then, progressively, toward its center.

o It allows the snake to grow or shrink by recomputing the force-free solution of the Euler

Equation each time the force boundaries are moved.

Combining these ideas yields excellent convergence properties for the snakes and reduces
substantially the probability of their getting trapped into an undesirable local minimum, even for

initializations that are very far away from the desired answer.

Clearly, the motivation for deriving both approaches is identical. We both hope to significantly
improve the predictability and convergence of the traditional snake method, and in both cases we

have decided to adopt a local adaptation technique in order to deform the snake model to keep 1t

50

“on” the preselected contour. We see at least two clear advantages for the present approach.
Viewing both systems as differential equation solvers, the Growing snakes are clearly formulated
as an initial value problem, while the Ziplock snakes solve a boundary value problem. With
essentially the same underlying differential equation, we expect a boundary value solution to be
significantly more numerically stable. Secondly, the decision procedure adopted by the Growing
snakes model to determine when it has extended beyond the “actual contour” is both complex (too
complex to describe in this limited space) and arbitrarily tuned, with a number of adjustable
thresholds. By contrast, there are only two decision procedures in the Ziplock snake process, the
first to decide when to move the force boundary, and the second to decide when the final fully
active snake has stabilized. Both of these procedures are simply, easily understood and framed
entirely in terms of local behavior of the dynamical system and its relationship to the image

resolution. It is thus easy to understand the relationship between the thresholds (1/4 pixel and

1/10 pixel) and the behavior of the snake.

Of course, the fact that the Ziplock Snake’s evolution is more constrained by the boundary
conditions may be seen as a drawback-it is unable to discover the full extent of a contour.
However, the proposed framework is clearly meant to be used as an interactive tool. The only
constraint on the user is the fact that the initial points must be close to the same well-defined
contour. This is a constraint that can naturally be explained to a photoanalyst, even if he has no
knowledge whatsoever of image processing. In other words, we have proposed a natural
initialization procedure that is completely in line with both the practitioner’s task and the
mathematical problem so that the “expert user” [36] of the original snake papers need not be that

much of an expert anymore.

51

Figure 24: Delincating roads on an aerial image using ribbon snakes. () Several pairs of end-
points. (b) Final detected road segments. Note that the actual ribbon, the centerline of
the road, is not shown in the image on the bottom.

C THE SITE-MODEL CONSTRUCTION COMPONENT OF THE RADIUS TESTBED
SYSTEM

Author: A. Heller, P. Fua, C. Connolly, and J. Sargent
Published in the proceedings of the IU Workshop, February 1996.

1 INTRODUCTION

We have chosen to measure the amount of effort expanded by the human analyst by the number of
mouse-clicks and the amount of mouse-travel required to achieve a desired answer. We feel that
this is a better measure than, for example, actual computation times because it truly reflects the
amount of human interaction and does not depend on the speed of the éomputer being used.

We first briefly describe the code instrumentation that was required to perform the experiments

and then report our results.

1.1 Instrumenting RCDE

We have developed and installed code that captures low-level information from the RCDE user
interface about individual actions taken by the analyst. Every mouse-motion associated with
making adjustments to object parameters, and every mouse click is captured into an event history.

The following information is recorded:

e Object Adjustment Events:

object ID

event start time

adjustment type, for example vertex-xy, vertex-z, or vertex-width

2-D world ID

zoom level

sequence of time deltas and mouse-position deltas of the form (delta-t dx dy)

e Mouse-Click Events:

- object ID

— event start time

53

event ID (for example: zoom-in, zoom-out, recenter, drop-z)

2-D world ID

zoom level

mouse 2-D world position

This event history is then summarized by a small number of meaningful numbers. Among them

arc

number of mouse-clicks

number of mouse-moves

total distance mouse moved during adjustments

total time in adjustment events

total time in fine adjustments

We have also implemented a metric to estimate the precision of an extracted road by comparing
the centerline of the extracted road to the ground truth centerline. For each vertex of the extracted
road, the distance to the nearest centerline point of the ground truth centerline is computed. The
data is reduced to the following two numbers:

e Mean vertex to ground truth distance

e Maximum vertex to ground truth distance

These seven numbers appear in the figures Section 1.2.

1.2 Experimental Results

We used images such as the 7000 x 7000 one shown in Figure 25 to perform our experiments and
chose a set of road segments to be modeled as accurately as possible. We compared four

approaches to road delineation:

Hand Hand-tracing using the RCDE interface but neither snakes nor road tracker.

54

Figure 25: An image with two overlaid roads.

Tracker Using SRI's road tracker [32] to provide the initial sketch in the full-resolution image

and then refining it using a ribbon snake [33].
Snakel Sketching the road using the full resolution image and refining it using a ribbon snake. .
Snake2 Sketching the road using a half-resolution version of the image. refining it using a ribbon

snake first at half resolution and then at full resolution.

In all cases we used the system’s default parameter settings and allowed the user to manually
refine the automatically generated results to produce satisfactory delincations. The bar graphs that

appear in Figures 26 and 27 are labeled “hand.” “tracker,” “snakel.” "snake2.”

wn
(94}

2.5

hand tracker snakel snake2 hand tracker snakel snake2

(@ (b)

Figure 26: Distance to hand-entered roads. (a) Average distance difference (b) Maximum dis-
tance difference. Because the hand-entered results are taken to be the reference, the
corresponding distances are zero.

We used the hand-traced versions of the roads as our references and the metric discussed above to
evaluate the quality of the delineations produced by the three semiautomated approaches. As
shown in Figure 26, the results are virtually indistinguishable in terms of average distance,

whereas the “tracker” approach does better in terms of maximum distance.

Figure 27 depicts the amount of effort required by each approach, as measured by the number of
mouse-clicks and the amount of mouse-travel. The tracker approach appears to be very effective
and yields at least a sixfold improvement on all counts except the total number of mouse clicks.
This occurs because starting and stopping each operation—automated sketching and snake
refinement—require several clicks. This number could be drastically reduced by defining

Common-Lisp methods that sequentially perform all these operations with a single mouse-click.

The snake?2 approach is almost as effective but requires more effort to provide the initial sketch.
This problem could alleviated by using Ziplock Snakes[34] instead of traditional snakes.

For all three semiautomed methods, however, a large portion of the human interaction goes into
specifying the width of the road, as the current tools have no way of computing it. Therefore,
methods to compute the width of a road given only its centerline would be extremely valuable and
should be the object of future research. In short, by further improving the interface and
developing a width-computing algorithms, we should be able to turn the current sixfold reduction

of effort into a tenfold to hundredfold one.

56

g

hand

snakel

snake2 hand tracker b snakel snake2

10000

hand

snakel

snake2 hand wracker _ snakel snake2

(d)

hand tracker, snakel snake2

Figure 27: Amount of effort. (a) Number of object clicks. (b) Number of mouse moves. (c)
Total mouse distance. (d) Total mouse move time. (e) Total mouse move time for fine

adjustments.

57

58

D CONTEXT-BASED VISION

Authors: T. Strat, P. Fua and C. Connolly
To appear in RADIUS: Image Understanding for Intelligence Imagery, Oscar Firschein and
Thomas M. Strat, editors, Morgan Kaufmann Publishers, 1997.

1 INTRODUCTION -

Thirty years of research in image understanding (IU) have produced an enormous number of
computer vision algorithms, many of which have demonstrated reliable performance at solving
particular tasks in restricted domains. However, the development of computer vision systems that
are reliable in more general circumstances has proved elusive [8]. It is in response to this situation
that a framework is offered within which computer vision algorithms of specialized competence
can be used and integrated with other such algorithms to produce a reliable vision system that
operates more effectively in a broader context than any of its individual component algorithms
can. Recently, other authors have also stressed the use of context to aid image

interpretation [9, 10, 11].

The site model construction and editing system being developed within the RADIUS program
comprises a large number of computer vision algorithms, each tailored to accomplish a particular
task under a particular set of circumstances. The goals of these algorithms may overlap or even
duplicate each other’s goals, but the assumptions that they make and the data with which they
operate will often differ. It is important that a user of the system not be required to understand the
IU technology to take advantage of the IU algorithms. For this to happen, the system must be able
to automatically select suitable algorithms and parameters to solve particular IU tasks. Within
RADIUS this concern is paramount because of the need to put advanced IU technology in the
hands of casual users, specifically the image analysts. Furthermore, the need to provide context
information disciplines TU algorithm designers by forcing them to exercise their algorithm

thoroughly to provide the required context information. i

Our strategy for integrating such a collection of computer vision algorithms is to represent
explicitly the assumptions made by each algorithm, and to use the context of the present task to
select the most appropriate algorithms for solving that task. By doing so, we seek to avoid the
source of many failures of computer vision techniques: the employment of an algorithm outside

the bounds of its intended domain of competence.

This strategy is based on prior work in context-based vision at SRI [12, 3, 13]. This work resulted

59

in the CONDOR architecture that we describe first. We then describe the context-based architecture
(CBA) that we have implemented within the Radius Common Development Environment (RCDE)
and show that it constitutes an attractive framework for organizing a site model construction

system using many algorithms that extract different features under different circumstances.

2 THE CONDOR ARCHITECTURE

In a context-based vision architecture, the development of general-purpose visual capabilities is
attempted by assembling large numbers of special-purpose algorithms. Their invocation and the
interpretation of results are mediated by the consideration of contextual information.

The image understanding system CONDOR was designed along these lines to serve as the
perceptual architecture for a hypothetical outdoor robot [S1]. Given an image and a possibly
extensive spatial database, and a world model describing the robot’s environment, the system is to
analyze the image and to augment its world model. CONDOR's recognition vocabulary consists
mainly of natural objects such as trees, bushes, trails, and rocks. Because of the difficulty of
recognizing such objects individually, CONDOR accepts an interpretation only if it is consistent

with its world model. CONDOR recognizes entire contexts, rather than individual objects [12, 52].

By making explicit the built-in assumptions inherent in computer vision algorithms, the CONDOR
architecture allows context to influence the recognition process. Rather than employing a

hard-wired control structure, the invocation of all algorithms is governed by context.

CONDOR associates a data structure called a context set with each IU algorithm. The context set
identifies those conditions that must be true for that algorithm to be applicable. Efficient and
effective visual recognition can be achieved only by invoking IU algorithms in those contexts in

which they are likely to succeed.

Formally, a context set is a collection of context elements that are sufficient for inferring some
relation or applying some algorithm. A context element is a predicate involving any number of

terms that refer to the physical, photogrammetric, or computational context of image analysis.

Each algorithm has an associated context set, and is invoked only if its context set is satisfied. A
context set is considered to be satisfied only if all its context elements are satisfied. As an
example, consider a simple operator that extracts blue regions to find areas that could be labeled

“sky.” A context set for this operator might be

{ image-is-color, camera-is-horizontal, sky-is-clear, time-is-daytime }

The blue-sky algorithm would be unreliable if it were employed in anything but this context.

60

Other blue objects might also be detected in this context, but they are eliminated later by other

contextual constraints, such as image position with respect to the horizon.

2.1 Context Sets

Context sets are used to specify the conditions that must be met for a given algorithm to be
applicable. The context set can also specify the conditions that must be met for a given parameter -

setting to be useful. For example,

MBO(closed-curve, rectangular-corners, manual-entry, gradient-descent)
specifies the parameters for a model-based optimization (MBO) algorithm! that could be used to
extract roof boundaries under some circumstances. The following context set encodes conditions

that must be met for the successful employment of that algorithm to extract roofs.

{ image-is-bw, image-resolution< 3.0, interactivity-is-semiautomated }
This context set gives the requirements that must exist for the MBO algorithm to be applicable
and it specifies the suitable parameter values. In the previous example for detecting roofs, the
parameters were specified as having a closed-curve topology, an objective function preferring
rectangular corners, initial boundary provided by manual entry, and the use of a gradient-descent

optimization procedure.

In practice, a large number of context sets governing the application of MBO algorithms as well
as other algorithms could be constructed and used to implement a cartographic feature-extraction
system suitable for site-model construction. It is clear that such a collection could be unwieldy

and difficult to maintain. A more structured representation of the context-set concept is needed.

2.2 Context Tables

One alternative representation for context sets is the context table — a data structure that tabulates
the context elements in a more structured fashion [53]. An IU algorithm is associated with each i

row in the table: each column represents one context element, as shown by Table 3.

The context table is equivalent to a collection of context sets. Conceptually, it provides a more
coherent view of the contextual requirements of related algorithms. Applicable algorithms are
selected by finding rows for which all conditions are met. One drawback to the table
representation is its potentially large size. Each algorithm may require many rows to capture the

contextual constraints of its various parameter combinations. Its chief value is its organization of

'MBO is discussed in Chapter 3 of this book.

61

Table 3: An Example of a Context Table

feature interactivity resolution geography algorithm
1 roof semiautomatic <3m — MBO(topology=closed-curve,

: obj-fn=rectangular-corners,
init=manual-entry, opt=gradient-
descent)
roof manual <10m — CME(primitive=closed-curve)
road semiautomatic <Ilm hilly MBO(topology=ribbon-curve,

‘ obj-fn=(smoothness(0.5),continuous,
parallel),

init=manual-entry, opt=gradient-
descent)

51 road semiautomatic <Ilm flat MBO(topology=ribbon-curve,
obj-fn=(smoothness(0.8),continuous,
parallel),

init=manual-entry, opt=gradient-
descent)

road manual <10m — CME(primitive=open-curve)

road manual <Ilm —_ CME(primitive=ribbon-curve)

road semiautomatic <2m — ROAD-TRACKER
(control=bidirectional-search,
init=manual-entry)

wWmnN

O o~

contextual information for knowledge-base construction.

2.3 Context Rules

A third alternative for representing context sets is to encode them as production rules whose

antecedent is the context set, and whose consequent is the applicable algorithm. For example,

{ image-is-bw, image-resolution< 3.0, interactivity-is-semiautomated } =—> MBO(closed-curve,

rectangular-corners, manual-entry, gradient-descent).

One advantage of encoding the constraints as rules in a logic program is that using the logic
program interpreter eliminates the need to devise special machinery to test satisfaction of context
sets. The unification mechanism of the logic program provides a generic mechanism for matching
the constraints embodied in a rule to the current context. Context rules can be more compact than
the equivalent context table because additional predicates can be introduced to capture common

context elements that appear in multiple rows of the table.

Whatever representation is chosen, it is clear that context sets can encode the information
necessary to make intelligent choices of IU algorithms to solve particular tasks. Furthermore, they

62

can be employed in either direction. In the forward direction, the context sets are used to find
applicable algorithms. In the opposite direction, the sets can be used for several purposes,
including the selection of images on which to invoke a given algorithm.

While CONDOR has demonstrated a significant capability for recognizing natural objects in
ground-level outdoor imagery, perhaps its more enduring contribution lies in its context-based
architecture, which offers a design methodology with broad applicability. For example, CBA is an
attractive framework for organizing a site model construction system using many algorithms that

extract different features under different circumstances.

3 CONTEXT-BASED ARCHITECTURE: THE HUB

We now turn to the use of CBA in a 3-D site modeling system. We have implemented a system
known as the HUB. The HUB provides a framework for semiautomatic selection of appropriate
algorithms for certain task and site combinations. One of its primary goals is to prevent
algorithms from failing under circumstances for which they were not designed. In addition to
algorithm selection, the HUB can be used to select various other elements of context in an IU
task. For example, a user can query the HUB for those images or feature types that are

appropriate for a given algorithm.

A prototypical example used in this document is road detection: Lynn Quam’s road tracker [54]
works well on clearly defined roads at relatively high resolutions. For low-resolution images,
where roads appear as thin curves, it might be more appropriate to rely on Ziplock Snakes [34].
Hence, the examples of HUB integration and usage given here employ these two algorithms,

allowing us to explore some of the issues that arise.

The HUB has been implemented as a Prolog-based query system. The use of Prolog is motivated
by its flexibility. Rules can be added and removed on-the-fly, and queries can be made on any
number of variables. We use the version of Prolog defined in the book entitled On Lisp [55]. The
Prolog engine has been modified to allow “hooks” to be executed at each inference. This allows
the HUB to keep track of successes and failures, and is intended to provide the user with useful
feedback on the inference process: For example, if no algorithm strictly satisfies the user’s
requirements, are there any which come close, say by one predicate? Based on the task to be
performed, the HUB can query its database to determine which algorithm is suitable for applying
on a given image, or for that matter which images or features are suitable for a particular
algorithm. In addition, Prolog is used at the interface level to maintain the consistency of user

interactions. Whenever the user selects options, the Prolog engine is invoked to ensure that the

63

(:algorithm 7name 7params)
?name: The name of a lisp function
7params: A list of the parameters to the function

(:task ?name ?feature 7operand)
7?name: A generic task name, such as :extract, :refine
?feature: A feature type (eg, :building, :road, :functional-area)
7operand: An object to be used, an image, a region, or other designation
of a location where the task is to be accomplished

Figure 28: Documentation of compound terms.

(solves 7alg 7task)
7alg is an algorithm that solves the task ?task under some conditions

(invoke ?7alg)
7alg is an algorithm that could be invoked to solve the given task
in the current context

Figure 29: Documentation of some predicates.

(a)
; (invoke ?7alg)
; 7alg is an algorithm that could be invoked to solve the given task
; in the current context.
(<- (invoke 7alg)
(desired-task ?task)
(solves 7alg 7task)
(desired-interactivity 7int)
(interactivity ?7alg 7int)
(desired-accuracy ?acc)
(accuracy ?alg 7acc))
(b)
; (solves 7alg 7task)
; An algorithm that solves a task using an image,
; also solves the task for the site of the image.
(<- (solves ?alg (:task 7name ?feature ?site))
(image-site 7image ?site)
(solves ?7alg (:task 7name 7feature ?image)))

Figure 30: Documentation of some of the top-level rules.

user interface is in a state consistent with the HUB rule set.

64

3.1 Terms

Before describing the context-based architecture in detail, we introduce two concepts that are

central to its operation: algorithms and tasks, as outlined in Figure 28.

Algorithms and tasks are represented in the HUB rule set as 3-tuples whose elements can be
constants or variables. These tuples, in turn, are used in Prolog rules. As inferences are made, the
variables within these tuples can be unified (that is, constants can be consistently substituted for
these variables in an inference step) to produce instantiations of particular algorithms or tasks.
Algorithms and tasks are normally coupled within the same rule so that successful unification

produces a consistent algorithm/task pair.

An algorithm descriptor, represented by a 3-tuple, designates a piece of code that implements a
computer vision technique. The first element of the tuple is the constant :algorithm. The second
element is the LISP symbol that is the name of the algorithm. The third tuple element is a list of
context-dependent parameters. The parameters will typically include an image, class of the LISP

representation for the object, and type of feature to be extracted. For example, this tuple

(:algorithm road-tracker (fh-image-2 CME: :3D-RIBBON-CURVE :road))
indicates that the road tracker algorithm is to be invoked on the image named fh-image-2,
creating an object of class 3d-ribbon-curve, and that it can be applied to find any road-like

object.

A task descriptor is a tuple indicating an operation that can be performed. The first element of a
task descriptor is the constant : task, followed by the name of the task, the type of feature that is

desired, and an image. An example task is

(:task extract wide-road 7image).

Here, the task is to extract a wide road. The variable ?image is left unbound, since this task
description is used in Prolog as part of a larger tuple containing the algorithm descriptor. When
successfully unified, the presence of an 7image variable in the task and algorithm descriptors

ensures a match between the algorithm and task descriptions, and results in an actual image to be

used in the task.

3.2 Vocabulary

The first step in specifying HUB rules is to define a suitable vocabulary for rules. The vocabulary

is used to describe images, sites, features, algorithms, and user preferences, to allow the HUB to

select algorithms to apply in a particular task.

65

There are four main categories in the vocabulary:

Algorithm

Image
e Site

Feature

Although the HUB itself uses Prolog, algorithm designers are not required to specify their rule
packets in Prolog. For inclusion in the HUB, each algorithm should be accompanied by a set of
basic declarations of the properties of the algorithm, followed by one or more lists of image and

site conditions under which the algorithm will exhibit robust behavior.
Algorithm Vocabulary ~ The algorithm vocabulary is used for basic declarations of algorithm
properties. The algorithm designer should supply as many of these as is practical:

e time — estimate of running time (algorithm speed)

e memory — estimate of memory usage (kilobytes)

task-type — e.g., extract, refine, or level of required initialization

interactivity - e.g., manual, semiautomatic, automatic

e accuracy - e.g., coarse, fine
Image Vocabulary At present, the image vocabulary contains the following image properties:

e dimensions - image dimensions (numbers)

e time-of-day - time of day and date

imaging-geometry — azimuth, elevation (degrees)?
e registration-error — (number)

e GSD — ground sampling distance — pixel width in meters at ground level (number)

2Intended for algorithms whose performance differs under nadir and off-nadir conditions.

66

e footprint — ground area covered by the image (number)

e dynamic-range — difference of maximum and mininimum pixel values (number)
e cloud-cover — percentage of cloud cover (number)

e insolation— INcoming SOLar radiATION W/ m? (number)

e spectrum— portion of spectrum imaged (lo, hi, numbers)

e snow-cover — percentage of snow cover in the image (number)

e albedo — percentage of light reflected (number)

Site Vocabulary A number of site-specific properties form their own vocabulary:

facility - type of facility

e layout — site layout (e.g., regular, random)

e direction— dominant direction (degrees from north)
e vegetation - percentage of site area

e buildings — percentage of site area

e terrain - flat, hilly, rugged, mountainous

e terrain-quality:

— fake-horizontal
— fake-planar

- DTED-1

- DTED-2

— Hi-Res

e georeferencing— absolute, relative, none -

67

Feature Vocabulary This vocabulary is used to describe the kinds of features that can be

extracted or refined by the algorithm:

feature-type — name of the feature type (e.g., road, building).

e feature-vis— percentqage of the feature that is visible.

feature-width — width in pixels of the feature.

feature-length — length in pixels of the feature.

In addition, an “interface vocabulary” expresses certain predicates, such as desiredaccuracy,
desired-feature-visibility, and desired-feature-2d-width, in terms of the current
state of the HUB user interface. Rules defining these predicates contain calls to LISP that access
(and possibly change) the interface state. This interface rule set is the means by which the user’s

selections can be checked for consistency.

3.3 Predicates

The two most important predicates used in the context-based architecture are solves and invoke
(Figure 29). The clause (solves 7alg 7task) is true if the indicated algorithm can be used to
solve the indicated task. Here, ?alg is an algorithm descriptor, and ?task is a task descriptor,
both as described above.

The clause (invoke ?alg) is true if the indicated algorithm is applicable to solving the current
task. It is the truth of this predicate, and the associated binding of ?alg, that the context-based

architecture is expected to compute.

3.4 Rules

The primary rule governing the operation of the HUB is shown in Figure 30(a). It specifies the
conditions that must be satisfied for an appropriate algorithm to be found to solve the currently
desired task in the current context. In words, this rule states that an algorithm to be invoked must
be capable of solving the desired task, and that its level of interactivity must be what is desired
and its accuracy must meet the desired accuracy. Assertions of the clauses (desired-task
7task), (desired-interactivity ?int), and (desired-accuracy 7acc) are derived

from the state of the user interface (i.e., are ultimately selected by the user).

68

(2)
; Chain rule:
. A task can be solved by splitting it into two parts.

’

(<- (solves (:algorithm compose (7algl 7alg2)) (:task :extract ?feature?
?image))
(solves ?algl (:task :extract ?featurel 7feature2))
(solves 7alg2 (:task :extract ?feature2 ?image)))

(®)

. The interactivity of the composition of two algorithms with the

?

; same interactivity is the same.

(<- (interactivity (:algorithm compose (?algl ?7alg2)) 7int)
(interactivity 7algl ?int)
(interactivity ?alg2 ?int))

(c)

; If either algorithm is manual or semiautomatic, the composition
: must be semiautomatic.

2

(<- (interactivity (:algorithm compose (7algl 7alg2)) :semiautomatic)
(interactivity ?7algl 7int1)
(interactivity ?alg2 7int2)
(1isp (not (equal 7intl 7int2))))

(d)

; The accuracy of the composition of two algorithms is the accuracy

; of the last algorithm

(<- (accuracy (:algorithm compose (7algl 7alg2)) 7acc)
(accuracy ?algl 7acc))

Figure 31: The Chain Rule.

Several auxiliary rules, such as the one shown in Figure 30(b), add versatility to the control
structure. This rule states that an algorithm that solves a task using a particular image also solves

that task for the site captured by the image. For example, the task

(:task :extract :building fort-hood)

can be reduced to

(:task :extract :building fh-imagel)
if fh~image1 actually portrays the Fort Hood site.

69

: (road-tracker ?image ?class)
; The top-level lisp function to invoke the SRI road tracker algorithm.
; 7image: The image to be used
; ?class: The RCDE class to be instantiated
(<- (solves (:algorithm ’road-tracker ?image ?class 7feature)
(:task :extract ?feature ?image))

(image ?image)

(subtype :road ?feature)

(rcde-class-of-feature-type 7class 7feature)

(feature-visibility ?v)

(1isp (and (numberp ?v) (> ?v 90)))
(hub-feature-width-2d ?feature 7w)

(lisp (and (numberp ?w) (> 7w 6)))
(desired-feature-width-property 7c)

(is ?c :constant)

(desired-feature-sides (?1x 7ly) (?rx 7ry)))

(<- (interactivity (:algorithm ’road-tracker ?7image ?class ?feat) :semi))

(<- (accuracy (:algorithm ’road-tracker ?image 7class 7feature) :coarse))

Figure 32: The rule packet for the Road Tracker algorithm.

Posing the query (invoke ?alg) triggers the search of a binding for 7alg that solves the desired
task, ?task. If successful, the binding of ?alg that is produced (through unification) is typically a
compound term specifying an algorithm, the imagery to be used, and any parameters it needs. If
no applicable algorithm can be found, the search terminates and the failure is reported.

3.5 Chain Rule

The use of the Chain Rule given in Figure 31(a) allows the interpreter to search for a sequence of
algorithms that collectively solve the desired task. The rules in Figure 31(b), (c), and (d), describe
how the interactivity and accuracy of a composition of algorithms relate to the properties of each

individual algorithm.

3.6 Rule Packets

Introduction of a new algorithm into the system requires specification of a packet of rules that
delimit its scope of applicability, its properties, and its assumptions. The primary means for this is

the solves predicate.

70

(<- (solves (:algorithm ’ziplock-snake 7image 7class 7feature)
(:task :extract 7feature 7image))
(image 7image)
(subtype :road ?feature)
(rcde-class-of-feature-type ?class ?feature)
(desired-feature-ends (?sx ?sy) (7ex 7ey))
(lisp (and (numberp 7sx) (numberp ?sy) (numberp ?ex) (numberp Tey)))
(gsd ?image 7x)
(1isp (and (numberp 7x) (>= ?x 3.0))))

Figure 33: The rule packet for the Ziplock Snakes algorithm.

For example, Lynn Quam’s Road Tracker algorithm [32] seeks to follow the extent of a road by
correlating successive cross sections starting from an initial seed point. It requires that the width
of the road occupy at least 6 pixels. The rule packet governing the application of this algorithm is

given in Figure 32. The first rule states that the algorithm:

1. can be used to extract any feature that is a subclass of type road
2. needs the feature to be more than 90% visible

3. requires more than 6 pixels for the feature width in the image
4. requires that the feature width be constant

5. needs the user to pick two sides for the road

6. will use an instance of an RCDE class suitable for modeling the desired feature type.

The remaining two rules specify that the road tracker algorithm is inherently semiautomatic
(because it requires the user to provide initial seed points), and that the delineation accuracy that

can be expected is qualitatively designated as “coarse.”

The rule for invoking the Ziplock Snakes [34] is depicted by Figure 33. It is similar to the rule of
Figure 32 except for the fact that the ground-sample distance must be larger than 3.0 meters, and
that the user must supply endpoints. In practice, the HUB will therefore tend to use the road
tracker in high-resolution imagery and the Ziplock Snakes in low-resolution imagery. In addition
to the road-tracker and Ziplock Snakes, the HUB currently also has access to a ribbon-snake
algorithm [6] and to the F* dynamic-programming algorithm [56]. Ribbon snakes are invoked on
high-resolution, variable width roads, while F* is typically invoked on very low-resolution

images.

71

3.7 User Interface

One of the important features of the HUB is its ability to maintain a consistent internal state at
any point in the model construction process. Most user interactions with the HUB interface will
trigger the Prolog system, which allows the HUB to fill in missing information if necessary, or to
inform the user that certain choices are inconsistent. For example, if the user specifies that a
particular road has a certain width, the HUB will determine the road subtype (e.g., highway,
two-lane road) that is consistent with that feature width. In addition, every user interface item has
a “guess” option, which invokes Prolog to find a suitable value for that interface item given the
states of the other items. For example, one can ask the HUB for feature types that can be
extracted by a given algorithm by first selecting an algorithm, and then selecting the “Guess”
option in the feature type menu. Prolog is then invoked to query on the acceptable feature types

for the specified algorithm.

The use of Prolog also allows the HUB to make queries on more than one variable. Using this
feature, the HUB initializes itself by performing a general query of the rule set on all items in the
user interface. The currently installed rule packets dictate suitable values for each interface item.
When the HUB interface is presented to the user, any interface items that can be defaulted in this
way will have values, the exceptions being items which require user input (e.g., sides of roads,

selection of functional regions).

When enough information is present, the user need only hit the “Run” button, which will select
the appropriate algorithm and start the requested task. In the case of road delineation, the user
typically need only select endpoints, and possibly road sides, before selecting “Run”, thereby

invoking one of the four road delineation algorithms.

Once the task has been completed, the user is prompted for any editing (if necessary), and an

- accept/reject decision. If accepted, the objectv(with possible edits) is saved in the HUB feature
set. Each object so created is also tagged with the state of the HUB at object creation time. This
allows “construction by example”, wherein the user can request that the HUB create a new object
with the same parameters used to create a previous object. In this case, the HUB simply copies

the relevant parameters from the older object into the interface.

Figure 34 illustrates the interaction of the user with the system. The first example, shown in
Figure 34(a,b,c), deals with a road in a high-resolution image. Given the task description, HUB
selects the Road Tracker algorithm. The system asks the user to supply start and end points and to
indicate the road’s width, and then finds it. The second example, depicted by Figure 34(d.e,D),

demonstrates low-resolution road delineation: This time HUB selects the Ziplock Snakes

72

algorithm to trace the road. Note that, in both cases, the interface provides the user with an

indication of the context and the parameters used.

4 CONCLUSION

The context-based architecture described was designed to enable the construction of large,
reliable image understanding systems by integrating a collection of reliable, but specialized
algorithms. Initial experiments indicate that progress has been made in this direction, but formal

testing of even larger assemblages of algorithms is necessary to validate this belief.

Some of the known limitations of our current implementation are that

e There is no notion of likelihood of success. All algorithms are characterized as being either
applicable or not. Incorporating machinery to manipulate probabilities or other uncertainty
measures is possible, but ascertaining the likelihood of success of IU algorithms under

many and varied circumstances could be difficult.

e Incorporating additional algorithms requires hand crafting the rule packets that govern their
employment. Automated knowledge acquisition to automate this process is needed to

alleviate the burden.

e The CBA already has the ability to find sequences of algorithms to solve a given task.
However, it has no procedure to check the validity of intermediate results at runtime.

It is clear that the performance of an IU system employing the context-based architecture could
also be attained by integrating the same computer vision algorithms via more traditional methods.
However, the explicit representation of contextual constraints affords a number of additional
benefits that would be lost to a purely functional integration. These benefits include

Task specification: The context-based architecture allows the user to specify the task to be
accomplished, leaving the selection of specific algorithms to be decided by the system. For
example, the user can state that he would like the system to construct a 3-D model of a
building, and the system would decide which of several building-extraction algorithms
would be most appropriate given the currently available imagery and auxiliary data. The
user can make effective use of the IU system while possessing little knowledge of the

capabilities and limitations of the individual computer vision algorithms.

73

Choosing parameters: The context rules are used to establish algorithm parameter settings, in
the same way that they delimit the range of applicability. While computer vision algorithms
can often compute their parameter settings from data at runtime, the context rules provide a

uniform means for all algorithms to specify how their parameters are to be determined.

Integration: When building large systems in an evolutionary fashion, it can be difficult to add
new capabilities without jeopardizing the integrity of existing capabilities. The modular
decomposition of the context rules allows the developer to integrate a new algorithm by

adding a packet of rules governing its use, without modifying existing code.

Choosing imagery: It is sometimes important to identify the imagery that is most likely to allow
an algorithm to yield a desired result, rather than to choose an algorithm to run on a
preselected image. The context rules already encode the information necessary to make this
determination — they can be used to answer this question by fixing the algorithm and
allowing the image to be a variable in the query. In fact, the context-rule base can be used to
answer both questions simultaneously, finding the best combination of algorithms and

images to satisfy a given task.

In summary, the HUB provides a “firewall” that relieves the user from any need to know the
details of IU algorithm implementation and testing. The HUB rule packets define the proper
contexts for applying different algorithms. This greatly simplifies the effort required by a casual
user for site model construction. The likelihood of algorithm failure in performing a given task is
reduced (and ideally eliminated). The user need not waste time experimenting with algorithms to
determine their failure points. In addition, the HUB can serve a useful pedagogical role:
Interaction with the HUB will give a user greater familiarity with the contexts under which

different algorithms can be successfully applied.

74

‘peol mau e 20e[d 0) wnyyose axyeus yoodrz oy pasn sey g H YL () "peol 3y 10] siutodpud paldass sey
1950 9y [, (3) ‘1X91U0D UONIN[OSAI-MO[B Ul NUSW g H Panejap Jaylouy (p) ‘peol e aoe[d 03 19del], peoy 2yl soxoaul gNH
3y (o) aImeaj oY1 Jo sapls ay) pue (peol) adA) ainjes) ay) pa1ds[as sey Jasn Y, (q) '1x33u0d uornnjosal-y3iy e ur 1as a[ni
91} WOJ1J PaureIqo sanfea pajnejap Sururejuod adejIaul gnH Y1 Yiim payuasald st sesn sy, (8) :gnH 2U) Yiim gunoeIau] :pg NSy

9]

75

76

E LEARNING CONTROL PARAMETERS OF A VISION PROCESS USING
CONTEXTUAL INFORMATION

Authors: S. Houzelle, T.M. Strat, P. Fua and M.A. Fischler
Published in the proceedings of the ICPR Conference, October 1994.

1 INTRODUCTION

The research effort described here is an attempt to make computer vision systems more effective
by endowing them with a capability to learn. Our philosophy has been shaped by the following

principles, each of which has motivated some aspect of our approach:

Learning is essential — image understanding system designers cannot anticipate

all possible situations that may arise in advance.

No matter how much effort is devoted to building and refining a knowledge base, there will
always be limits to the breadth of competence provided. Even if it were possible to construct a
knowledge base sufficient for supporting the entire range of anticipated tasks, the required effort
and expense make it infeasible to do so in all but the most limited applications. Effective
mechanisms for enabling a system to acquire its expertise over time can have a significant impact

on our ability to construct systems that become more (rather than less) competent as they age.

A vision system should improve its performance through experience.

Rather than analyzing images in isolation and throwing away the results, a vision system should
interpret an image in the context of what it already knows about the scene. In addition, the results
of its interpretation should augment its knowledge of the scene and the extraction task, and the

system should be able to use that information to analyze similar situations more effectively in the

future.
An intelligent system should never be idle.

If an intelligent system has the ability to learn through experience, it might as well devise its own
training examples to more fully exploit that ability. Rather than maintain a static knowledge base

when the system is not otherwise engaged, it should concoct new situations or revisit previous

7

ones, invoke its repertoire of reasoning or visual capabilities, and update and reorganize its

knowledge base according to the results.

While the accomplishment of any of these objectives is profoundly difficult, we nevertheless have
endeavored to construct a framework that allows the exploration of a particular approach to
learning that offers the promise of at least partial solutions. More specifically, our overall goal is

to devise a practical computer vision system that can

e Recognize a class of objects in a set of related images
e Build an enhanced description of the environment from the sequence of images it processes

e Use its enhanced description of the environment to improve its recognition capabilities

1.1 A Cartographic Application

Imagine a cartographic application in which the photointerpreter’s task is to model all roadways
within a given geographic area by extracting such features from a collection of overlapping
overhead images. The photointerpreter is to be assisted by a partially automated system designed

to support 3-D map construction.

The traditional interactive approach embodied in today’s operational systems 3 can be described

as follows:

The system has a collection of algorithms that are suitable for extracting model
instances of specified objects. The user chooses the algorithm to be used to extract a
particular object. A menu is provided containing the default values of parameters,
which the user can override if he chooses. The algorithm with the designated
parameters is then applied to the image(s) producing a resultant model instance. The
user has the option to accept the result, to modify the result manually, to rerun the

algorithm with a different set of parameters, or to choose a different algorithm.

Two of the problems that the user of such a system must face are the choice of algorithm and the
setting of its associated parameters. These requirements mean that the user must have a fairly

high degree of expertise with the algorithms to accomplish the extraction task effectively.

3e.g., RCDE, GLMX, DSPW, KBVision, Geoset

78

If, on the other hand, the system is itself able to learn how to select among its algorithms and to
set their parameters through its experience with similar extraction tasks, it should be possible to

reduce the need for operator expertise while improving efficiency at the same time.

The approach we propose and describe in this paper addresses the feature extraction task as

follows:

The system has a collection of algorithms that are suitable for extracting model
instances of specified objects. The user chooses the class of objects to be extracted
and provides information about his task and the scene being analyzed. The system
compares the extraction context to its prior experience with similar extraction tasks,
to choose an appropriate algorithm and parameter settings for the current task. The
algorithm with the designated parameters is then applied to the image(s), producing a
resultant model instance. The user then has the option to accept the result, to modify
the result manually, to rerun the algorithm with a different set of parameters, to
choose a different algorithm, or to ask the system to provide an alternative selection
of algorithm and parameters. The system updates its database of experience with the

outcome for use in subsequent extraction tasks.

The focus of this paper is on establishing a foundation for machine learning in interactive image
understanding systems — how can a computer vision system use its experience to improve its
competence? The design and implementation of a widely used interactive computer vision
system, the RADIUS Common Development Environment (RCDE), has been discussed
elsewhere [57, 58]; this effort is intended to enhance the performance of RCDE through the
addition of a learning component. We build upon the notion of a context-based vision system that

has also been previously developed [59, 52]. ~

1.2 An Approach to Learning Visual Parameters

The user in our interactive system is a critical component in the automated learning process, even
though he is not necessarily aware of this role. The user provides the performance evaluation and
correction feedback that is necessary for directed learning and avoids the need for a
computationally infeasible trial-and-error approach. Our system takes advantage of the human

review of its results to determine how successful it has been, to reinforce its successes, and to take

corrective action for its failures.

Two different problems must be addressed. The first one is to find the best algorithm to run, and

79

the second one is to determine the best parameter setting for the selected algorithm in the given
context. Only a few authors have addressed these problems, and all are concerned with finding the
best strategy to accomplish a complex task necessitating several steps or subtasks. At each step
and depending on the data, they pick the best procedure among all possible to perform the
subtask. They focus on the choice of an algorithm, and typically are unclear on how they set the
control parameters. In the domain of pattern recognition, we can cite the work of Draper et

al [60, 61], which involves learning the best strategy to identify a certain type of object. A very
interesting point about this work is that they are able to give an upper bound of the cost of each
strategy {61]. We can also cite the OKAPI system [10], which more generally, can select the best
image processing chain to perform a given task. OKAPI has been applied successfully in the

domain of galaxy recognition.

Our approach has been guided by two points. First, our concern is quite different from the ones
above, because we are considering only one-step tasks*, and we assume we can have, in certain
cases, only one algorithm to achieve the task. Thus, we are primarily interested by the choice of

good parameter settings for a given algorithm.

Second, we believe that it is useless to choose a so-called best algorithm for a given task if we are

unable to set the control parameters correctly for any set of data.

Thus, the scheme we adopt is first to find the “best” parameter setting for every algorithm
available to achieve a specified task. Then we give a score to each parameterized algorithm,
showing the chances of the algorithm to succeed with the particular parameter setting. Finally, we

run the top-ranked algorithm.

Our approach is based on the use of contextual information. Many authors have used contextual
information in image understanding systems [62, 63, 64, 53], but few have made the use of
context a way to improve the performance of systems through experience and learning. We define
context as any information that may characterize the task or input data given to a vision process.
Thus, image resolution is part of the contextual information, as is the camera geometry, a priori
scene knowledge, and the purpose of image analysis. The approach relies on the assumption that
each “running context” (or simply context), consisting in a set of contextual values, can be related
to an acceptable parameter setting with a minimum of ambiguity. This requirement implies a kind

of continuity in both context and parameter spaces. This continuity can be expressed as follows:

Different contexts require, in general, different parameter settings while identical or close

contexts would require a single or similar parameter setting(s).

4Note that this is not restrictive because if a task is more complex and requires several steps we can apply the
procedure we have designed on each step of the task.

80

Using this hypothesis, our learning problem can be defined as a problem of generalization where
the goal is to find how the use of one parameter setting for one context can be generalized to

similar contexts, or more generally, nearest contexts.

In Section 2, the genefal scheme of the system is presented. We see that the various possibilities
offered to the user make this scheme very flexible. This flexibility and the need for using various
algorithms has implied certain constraints in the design of the system. We present them in

Section 3. The principal problem that arises is the presence of both numerical and categorical

context elements.

In Section 4 we focus on the retrieval problem which, given a new context, consists in finding the
nearest contexts that are present in a data base. To find the nearest contexts, we propose a measure

based on similarity between context element values. This measure deals with both numerical and

categorical context elements.

This kind of approach has some computational limitations and limited learning capabllltles Thus,
we have investigated another method based on incremental categorization, that places a new
context into a category where nearest already encountered contexts can be found. This kind of
generalization is very important to reducing the search time for similar situations. Learning by
observation, and more particularly conceptual clustering, which is a type of learning by

observation aimed at producing a classification for the observations, are well adapted to this

categorization problem.

In Section 5, we present different aspects of learning by observation and review some existing

systems using this technique. We see the extent to which the constraints of our problem are

satisfied by existing systems.

In Section 6, we focus on one particular method of conceptual clustering, and we enhance this

method to deal with heterogeneous types of variables.

In Section 7, we present the learning update, consisting in updating with new examples the data
bases where past experiences are stored, and eventually automatically learning a correct

parameter setting in cases where the system was unable to provide one. This phase is essential to

improving learning capabilities of the system.

In Section 8 and the Appendix, we describe the snake algorithm that we use to demonstrate our
system’s effectiveness. Snakes [5, 4, 65] are a very powerful technique for edge detection that
integrate information from both photometric and geometric models in an optimization framework.

More specifically, we show how our implementation allows the various parameters to be

81

context-specific as opposed to image-specific.

Finally, in Section 9, we present some experimental results; we show how our system makes the
use of vision algorithms easier by reducing the required user expertise while improving his
efficiency. We have implemented and tested an initial design and demonstrated successful
performance. Our experiments involved the extraction of 68 features in four images of two
different sites. These results are presented in graphical form where the effects of successful

learning are clearly apparent.

2 GENERAL SCHEME

The system we have designed is intended to use computer vision algorithms to extract
cartographic features from a set of imagery under human guidance. The system makes use of a
collection of algorithms, and must select appropriate parameter values prior to each invocation of
an algorithm. Choice of algorithm and parameter settings is to be made on the basis of contextual

information.

In the following a context element defines a contextual variable. A context will be a generic term
to define a contextual environment. Each context is characterized by a context vector regrouping
context element values. A parameter setting is a set of parameter values needed to run an

algorithm. A parameter setting is more formally represented by a parameter vector.

Let A(D,P) be a process that takes two kinds of information as input, data represented by a
vector D (which includes specification of the task), and parameters represented by a vector P. 4
gives a solution .S as output. Suppose we have calculated some context information about the task

and data represented by a context vector C.

The primary performance criterion for a practical system for interactive feature extraction is its
ability to generate a good result in a previously encountered situation while avoiding the
repetition of past errors. Thus, it is necessary for the system to keep a record of its successes and
failures. Operator review of the automatically generated results provides the necessary

information in a natural way.

From these considerations, we derive the general scheme for our system, depicted in Figure 35.
One data base (DB) is associated with each algorithm available to perform a given task. These
data bases contain past experiences expressed by pairs (C, P) given the correct parameter setting
P in the contextual situation C. Given a new context vector C, these data bases are used to

retrieve the “best” algorithm 4 and a parameter vector P. The process A(D,P) is applied and the

82

P’

Update @ 1o | Adjustment
D

? yes HESH

Figure 35: General scheme

user checks the validity of the result S. If S is acceptable, P is stored in order to update the
parameter value probabilities in the data base. If 4 failed, the user has three adjustment options.
The first one is to manually modify the parameters and to apply A again until it succeeds. The
second option is to manually modify the result § so it becomes reasonably good. In this case,
updating the data base consists in learning a correct parameter setting for the current situation.
Because the solution S is available, the learning can be done automatically. This phase is usually
performed after the session. Finally, the third option for the user is to modify some aspects of the
input data D. In such a case, a new context vector is calculated and the procedure starts all over
again. In this way, the system is able to improve its performance over time, as the likelihood that
the system encounters a context similar to one in which it has successfully accomplished its task

increases monotonically.

This architecture can serve as the foundation of a practical system for cartographic feature

extraction, while affording a path to the creation of a vision system with very powerful constructs

for learning.

3 APPLICATION DOMAIN CONSTRAINTS

The interactive nature of our system and the wide variety of data types it must deal with pose

additional challenges to the design.
The most important constraint (or capability) we have is to be able to deal with different types of

data. Both context elements and parameters can be either numerical or categorical. Table 4 shows

83

examples of some context elements that can be used. The resolution is a numerical context
element with continuous values. On the contrary, the task has categorical (nominal) values.
Finally, desired accuracy is a context with ordinal values — that is, symbolic values that can be

related to a numerical discrete function (like low = 1, middle = 2, high = 3).

Table 4: Different types of variables handled by the system.

context element | type possible values
resolution numerical, continuous | 0.1, 10, 100

task categorical road, building delineation
desired accuracy | ordinal low, middle, high

Most of the existing systems found in the literature consider only one type of data. Few systems
use both numerical and categorical variables, but consider numerical values as categorical. This is

often acceptable with ordinal variables, but not with continuous numerical ones.

Employing numerical values is a major problem for generalization, because close values cannot
be considered the same as completely different values. On the other hand, dealing with
categorical variables can also be a real problem when similarities between values are required. We

will see in Sections 4 and 6 two solutions to deal with all types of variables presented in Table 4.

A second constraint we have about variables is due to the fact that our system is interactive. One
role of the user is to provide values for context elements that cannot be computed automatically.
The interactivity is an opportunity to increase system performance. However, the user must not be
annoyed with too many constraints. Thus, we have to take into account that the user can decide
not to provide every context element values, and so that some context elements may have the

value “unknown’.

The number of context elements we use as well as the number of parameters an algorithm has can
be high. For instance, results shown later involve sixteen context elements and an algorithm with
eight parameters. Spaces of context elements and parameters have a high dimension, and the
expertise of the system cannot cover these spaces entirely. There are two consequences. First, the
system should be able to learn in an incremental way. Second, because of high dimensions, initial

learning may be poor and the learning method has to be able to deal with radical changes.

4 RETRIEVAL BASED ON SIMILARITY

Here, we focus on the retrieval module of our design as depicted in Figure 35. Given the context

of a feature extraction task, we wish to identify the previously encountered contexts that are

84

“pearest” to it. The parameter settings associated with those nearest contexts will be used to

choose the parameters for the current extraction task.

Using our hypothesis of continuity in context and parameter spaces, and given a new context
vector C, the retrieval problem can be more precisely defined as finding the nearest context
vectors Cjy,..,Cjn present in the data base of algorithm A;, and providing parameter vectors
Pj1,..Pjn associated with these nearest context vectors. A score has to be associated with each P j;
to rank the parameter setting according to its ability to produce a good result. The top-ranked pair
(4, Pj) is finally provided to the user as having the maximum chance to succeed as it

corresponds to the nearest situation already encountered>.

We investigate a measure based on similarity to find the nearest context vectors Cj1,...Cjn present
in a data base. Information retrieval is a domain that has produced a large number of similarity
measures to comparing two vectors (see [66] for an extended list). Let u and v be two vectors in a

n dimensional space. An important family of pseudo linear similarity measures between u and v

is defined by:

u.v
m(a,v) = —————~ 28
(wv)=5 LA (28)
where u.v = 37_, uxvx denotes the scalar product between u and v, and N and N, are two
normalizing functions (generally Ny = N3). For example, the very popular cosine measure is

defined with N (u) = [lul|, and N2(v) = |v||, where ||.|| denote the [or Euclidean norm.

This kind of ranking guarantees under certain conditions, that the less preferred objects are not
ranked ahead of the preferred [66). However, because of the possible categorical context elements

in our problem formulation, this kind of interesting ranking function is not directly usable.

A heuristic solution to this problem is to use one of these ranking functions in a real valued space,
transformed from the context space. The transformation we apply can be viewed as a
normalization of context element values. We define a transform function T : € — [0, 1],

¢ — T¢(c). If we consider a context C which value is ¢, Tc(c) is the normalized value of C. To
better understand what kind of normalization we are performing, and by analogy to fuzzy logic,
let us associate a predicate to each context element. Tt is going to quantify how much the value of

C supports the predicate associated with C.

Table 5 shows the result of the transform for different kinds of context element. Look Angleisa

5In general, a few pairs will be retrieved at the same time. Tt offers the user the possibility to choose the one he
considers the best.

85

numerical context, taking its value between 0 and 90. In this particular case, we have

Te(c) = 1 —¢/90. For example, if Look Angle = 0, the context value fully supports the
predicate “Look Angle is nadir”, and so T¢(0) = 1. Sensor Typeisa categorical context. In this
case, Tc(c) is one if ¢ = Visual, and zero otherwise. With this kind of transform, all differences
between two categorical elements are considered identically (i.e., zero, the maximum of
disagreement). Finally, Desired Accuracy is a numerical discrete context element. In this case

T is a discrete step function (with three steps in this particular example).

Table 5: Exemple of normalization performed on three types of context element.

Context Element | Context Type Predicate C| e Tc(er) | Te(er)
Look Angle Numeric Continuous | “Look Angle is nadir” 0° 45° 1 0.5
Sensor Type Categorical “Sensor type is Visual” Visual | Radar 1 0
Desired Accuracy | Numerical Discrete | “Desired Acuracy is high” | middle | low 0.5 0

In the transformed context space, we use a similarity measure defined by Equation 28 to rank
nearest context vectors. Normalization (N, and N, functions) is required when we want to keep
the length of the vector from being taken into account in the similarity measure. This is
particularly interesting for parallel vectors with different lengths. However, because vector norms

and parallelism have no special meaning in our problem, we have chosen Ny (u) = Na(v) = 1.

Thus, given the new context vector C = (c1,..,¢n), and one context vector Ci=(cit,-- cin) of a
data base, we define the similarity S between C and C; by the following inner product:

S(C,Ci) = Y, Ti(c) T(cix) (29)
k=1

where 7} is the transform function associated with context element k. Let n; be the number of
parameter settings provided to the user. The n; highest similarity values provide the nearest
context vectors present in a data base and, so, nj parameter settings associated with these context
vectors. If we perform this ranking for every algorithm available, the n, overall highest
similarities provide the n; best algorithm and parameter settings that can be proposed to the user.

As we will see in Section 9, the performance of this method is reasonably good. However, if the
number of context vectors present in a data base is too large, it may take too long to use this
method in an interactive scheme. Moreover, the method provides very limited learning

capabilities.

Thus, in the next sections we present another method based on the notion of learning by

observation, and more specifically based on conceptual clustering.

86

5 LEARNING BY OBSERVATION

The main goal in learning by observation is to build a representation of concepts supported by
examples presented to the system. Generally, two problems must be addressed in learning by
observation. The first one is to identify relevant concepts from the examples, and the second one
is to find an appropriate representation of these concepts. Here, we describe some systems that

learn by observation, and we focus on the two problems of concept formation and concept

representation.

BACON [67] is a domain-specific system dedicated to chemical concept (law) formation.
Concepts are represented by mathematical equations. Given a general a priori form of equation,
BACON searches through the space of data, and the space of laws, to discover relations between
data variables. If the way of representing concepts is natural in BACON, this is not the case for
general-purpose systems of learning by observation. It is important to see that the choice of a

particular representation is essential and dictates what concept a system is going to be able to

learn.

The UNIMEM system [68, 69] uses a technique called Generalization Based Memory (GBM)
that stores examples in a hierarchical data base (memory) describing concepts with increasing
specificity. Concepts (generalizations) are represented by nodes in a discrimination net. Each
node is a set of examples supporting the concept of the node. Learning is incremental. Each time
a new example is considered, a controlled search is performed in the GBM to find the most
specific concept(s) that describe the new example. During the search process, the matching of a
new example to a generalization is based on a numerical measure of similarity between values of

the new example, and values of a generalization [69].

In the BLIP system [70], both knowledge and concepts are represented by rules and predicates.
To try to minimize the bias introduced by the representation mode of knowledge, knowledge rules
are translated into domain-independent meta rules. These meta rules are used to generate new
rules (concepts) and meta rules. The generation of new concepts is demand driven — that is, it is

triggered by the weakness (lack of information) of the current representation of knowledge.

Both BACON and BLIP employ constructive learning. In the process of concept formation they

create descriptors not present in the input data. This creation is very important in the learning

process.

In our particular problem of finding a parameter setting for an algorithm in a given situation, we
could think of expressing the expertise to determine a correct parameter setting by a set of rules as

in the BLIP system — that is,

87

In situation 1, parameter A has to be increased by 0.1 from its standard value

However, this kind of expertise has major limitations, because many counter examples are going
to be found to rules like the one above. Moreover, it is known that systems employing this kind of
expertise perform poorly in complex domains. Studies have shaken the theory of learning
involving general rule sets and imply that human expertise is based on the ability to compare a
current situation to previous ones [71]. This theory is supported by neural network
implementations that show that it is possible to design expert systems that do not reason (in the
sense of manipulating rules) but rather act using similarity with past experiences [72].

A particular type of learning by observation is called Learning from examples. Both types of
learning have the same goal, the determination of concept generalization. However, in the case of
learning from examples, concepts are created for a particular purpose: the classification of
examples. This implies new constraints for existing concepts. They have to form a partition in the

space of examples — each example must verify or refine only one concept.

There are two types of learning from examples. The first one, called concept learning, assumes
that a teacher is available to preclassify examples. The system has to produce a description of the
examples of each class, which is general enough to accommodate every example, but
discriminating enough to avoid interclass ambiguity. Among existing systems using the
learning-from-examples approach, we cite INDUCEL1.1 [73] and the system introduced by
Cromwell and Kak [74]. Both systems use conjunctions of predicates to represent concepts, and
both manipulate four types of data: nominal (categorical), ordinal (numerical discrete), numerical
(continuous), and hierarchical. The Cromwell and Kak system includes more kinds of
generalization rules, and is applied to a real case of pattern recognition in the domain of electronic

component recognition.

When a system does not need preclassified examples, but rather is able to determine by itself the
relevant classes (concepts) to create, we talk about concept clustering. The classification problem
is then generally performed in two steps. The first consists in determining appropriate clusters,
and the second one consists in characterizing clusters (as in concept learning). The main problem
is to determine a measure to evaluate the quality of the clustering. Several criteria have been
tested. Systems like CLUSTER/2 [75] and CLUSTER/S [76] use the notion of simplicity
(comprehensibility) of the concept representation. Unlike statistical clustering techniques (based
on numerical similarities) that produce clusters difficult to analyze, they make the assumption that
the simpler the class description, the better. To avoid having a trivial partition with all examples in
the same class, the final description must closely match the original examples. This clustering

criterion relies on a psychological study showing that people who are asked to classify complex

88

data choose only one or a few simple features from the data to build a set of disjoint classes.
CLUSTER/2 and CLUSTER/S use conjunction of predicates to represent concepts. In addition,
CLUSTER/S uses a priori knowledge related to the application domain (expressed with a
semantic net called Goal Dependency Network) to determine the relevant descriptive predicates

for a given goal, and thus guide the concept formation.

Kodratoff and Tecuci [77] use a conceptual distance as a criterion for cluster formation.
Examples are represented using conjunction of predicates. The defined conceptual distance is
based on the idea that two very different examples are generalized in an expression very different
from the original examples (in terms of predicates, arguments of predicates, and number of
predicates in the expression), while similar examples can be generalized to themselves. Thus,
both the generalization and the process of obtaining this generalization indicate the conceptual

distance between examples.

A third criterion used to evaluate cluster quality consists in maximizing the inference ability of the
resulting partition. The idea is that the better you can predict features based on class membership,
the more advantageous it is to create such a class. Both COBWEB [78] and the system presented
by Anderson [79, 80] use this kind of criterion in an incremental learning scheme. A new example
is placed in the class that maximizes the predictability of the category formed by the addition of
the new example, or is classified in a new category if adding the example to an existing category
does not improve predictability of any of the classes. The number of classes is determined
automatically by the system. These incremental schemes are interesting because learning is easily
accomplished by considering new examples. However, the resulting clustering is sensitive to the
order in which new examples are presented to the system. To minimize this dependency, as new

examples are added, COBWEB tries to split or merge classes to improve the partitioning.

Table 6 presents a summary of important features of the learning systems described above. These

features are:

e Learning type: Conceptual clustering is the most appropriate method for our problem. It
does not require a teacher giving preclassified examples, and so reduces to a minimum the

need for human expertise. It also produces a partition of the space of examples.

e Concept formation: similarity-based models, predictability-driven models, and maximizing
comprehensibility models are fairly similar. In general, predictability-driven methods will
be sensitive to the number of features shared among objects and, therefore, they tend to
make the same predictions as similarity-based models [81]. The predictability-based

quality measure used by COBWEB can be viewed as a continuously valued analog of the

89

quality measure used in CLUSTER/2 based on comprehensibility [78].

e Representation mode: As mentioned earlier an appropriate representation of concepts is
essential to be able to express all expected concepts. Representation of concepts using
conjunction of predicates is valuable for its ability to manipulate heterogeneous types of
data. However, no method of conceptual clustering, using conjunction of predicates, is
effective when dealing with numerical variables (in contrast with categorical ones).
Hierarchical structures (trees) are also interesting because, associated with some controlled

heuristic search, they provide faster methods of categorization.

e Constructive learning: This feature remains a challenge for most existing systems. For us,
it consists in learning a new similarity relation between context elements, and ultimately

new context elements.

e Data manipulated: As mentioned previously, we need to manipulate three kinds of data:
nominal (categorical), ordinal (numerical discrete), and continuous numerical. Only
learning-from-example systems, and Anderson’s systems use all these types of data

simultaneously.

e Incremental learning capability: In the domain of conceptual clustering, only Anderson’s
system and COBWEB provide an incremental scheme required in our problem formulation.

e Teaching required: Because we want to make the use of new algorithms easy, we cannot
use a teacher for training. The role of a human operator using our system must only be to

evaluate the algorithm results.

e Example order and concepts are dependent: Incremental schemes of conceptual clustering
are computationally effective, but sensitive to the order in which examples are presented to -
the system. COBWEB uses a technique of split and merge to reduce this effect.

Anderson [80] states that though the category structure can vary substantially as a function

of order, the predictions delivered by the different categories do not differ much themselves.

e Number of categories are determined automatically: Because we have no teacher, this

feature is essential.

e Concepts produce a partition: This feature is preferred to avoid ambiguities, but is not

strictly required, if examples appear in only a few categories.

From this evaluation, we can see that the most appropriate method of learning seems to be the

conceptual clustering approach using an incremental scheme of clustering and a hierarchical

90

representation of concepts. However, no systems having these characteristics and the ability of
dealing with both categorical and numerical variables already exists. Only two systems use

conceptual clustering in an incremental scheme: Anderson’s system and COBWEB.

* Anderson’s system is not hierarchical, and has the following major inconveniences. (1) It uses a
Bayesian approach relying on strong assumptions about independency of probability
distributions, and form of distributions of the manipulated variables. (2) A priori knowledge that
we may not have for every algorithm we use is required to set some of the several parameters of
the system. (3) The number of different values of a categorical context element has to be known a
priori. (4) Finally, as we will see in Section 9, parameters of the system seem to be very sensitive
and hard to set correctly. Anderson’s approach is concerned with deducing psychological
conclusions from the parameters associated with the best (or expected) categorization — parameter
values are found just by doing experiments. Furthermore, it seems that no standard values exist;

parameter values are really application-dependent.

So, even if COBWEB does not deal with continuous numerical variables, it seems to be the most
adapted to our problem, and it is possible to enhance COBWEB capabilities to take into account

numerical variables.

6 RETRIEVAL BASED ON CONCEPTUAL CLUSTERING

Because of the number of context vectors that can be present in the data base, we cannot afford an
exhaustive search for the nearest contexts. By categorizing context elements, we reduce the
amount of search, because as a new context is presented to the system, it can be compared to each
category instead of each context. A hierarchical organization of categories allows the search

process to be even faster.

Thus, the incremental conceptual clustering scheme using a hierarchical representation of
concepts seems well adapted to our problem. A conceptual clustering method of categorization
can be used as a search method to categorize a new context vector C. The resulting category can
be considered as containing the contexts nearest to C. The conceptual clustering quality measure

after categorization of the new context vector can be used to rank the algorithms available.

As mentioned earlier, COBWEB [78] is the only system using incremental conceptual clustering
that is well-adapted to our problem. It seems now necessary to present in more details COBWEB,

focusing on the quality measure of clustering and the search (categorization) process of this

system.

91

6.1 COBWEB

In COBWEB, examples are represented using attribute-value pairs. Values are only nominal or
ordinal. Concept formation is based on predictability. The quality of a clustering partition

{®i,..,w,} is measured using the following category utility:

Th=1 P(O) X ik

U= (30)
n
with
J
where 1 denotes the number of classes in the partition. P(C; = V;j|ax) is the probability for

context element C; to have value V;; in class @y, and P(C; = Vj;) is the probability for context
element C; to have value V;; over the whole partition. U measures the increase in the expected
number of context element values that can be correctly guessed knowing the partition {o1,..,0,}
over the expected number of correct guesses when no partitioning is given [78]. As we can see,
Equations 30 and 31 are fully applicable only for categorical, and eventually for ordinal values.

The search structure (called Control Structure) used to categorize a new example in COBWEB is
presented in Table 7. At each level of the classification tree, the utility of the creation of a new
class in the partition is compared to the one of the insertion of the new example in an existing
class. The search is a recursive descent into the tree of categories. At each level, the best host for
a new object is defined as the class having the maximum category utility (as calculated with
Equations 30 and 31) after having added the new example. Splitting or merging is attempted on

best hosts to reduce the effect of example order.

6.2 Enhancing COBWEB capabilities

Fisher’s idea dictates that the category utility, expressed by Equation 31, is a measure of the
increase of expectation of a value knowing a partioning, over the one when no partitioning is
given. For numeric values the expectation of a value is measured by the variance of the value
distribution. The narrower the distribution, the smaller the variance, and the better a value from
the distribution can be predicted. Thus, for numerical values, we suggest the following term to

take place in the category utility measure:

2 2
si —Si(l)k
g = gk (32)
si+1

92

where s,zm is the variance of the distribution of values of the i’st context element in class wy, and
s is the variance of the distribution over all the partitions. Adding one to the denominator is
necessary to avoid problems with null variances. If 2 numerical context element is identically

distributed on a class @ and on the whole partition, the context element is irrelevant in any

partitions, and we have Siw, = Si and uy =0)

To demonstrate the categorization ability of our measure, let us consider the following simple
example. Table 8 shows a categorization example with three categories and three variables.
Variables are centered on the values indicated in the table. From this definition we have created 15
examples (5 from each category) by adding gaussian noise on central values. Resulting examples
have been presented randomly for categorization, using COBWEB search structure and the
category utility measure based on Equation 32. The final tree we obtain is presented in Table 9.

As we can see, the system was able to rediscover the three categories (Class 1, Class 3, and
Class 4). Since Category 2 is nearer to Category 1 by considering the two last variable‘s, it is
comforting to see that we find this relation in the tree. In all experiments performed using this
example we always found the tree shown in Table 9. Thus, the search structure, designed to
minimize the effect of example order, seems to perform reasonably well even with numerical

values. Results of different retrieval methods are presented in Section 9.

Since a new context has been categorized, parameters associated with nearest contexts can be
retrieved. After being categorized, the new context becomes a leaf of the category tree. Near

categories (brothers) in the tree represent nearest contexts from the new context.

However, the structure of the category tree can vary locally. It may be deep at some places, and

not in others. As a result, the number of brothers a leaf has can be very different from place to

place. Thus, the generalization may be sometimes too wide and sometimes not wide enough. To

avoid this problem, and be able to always proVide the same number n; of acceptable parameter
settings, we adopt the following strategy. From the new category, we climb in the tree to pick
surrounding leaf categories until a number ng of categories is reached (ng > ny). Then we sort the
contexts of each category depending on their similarities from the new context (nearest context .
first) using the similarity measure expressed in Section 4 by Equation 29. Parameter settings

associated with the n;’th first contexts are provided to the user.

This method has several advantages over the one presented in Section 4. First, it may be faster to
retrieve a correct parameter setting when data bases contain a large number of examples. Second,

the predictability measure performs well when lots of examples are involved. During

categorization, when we approach the leaves of a tree, performance decreases. By using a

similarity measure over the ng nearest contexts, we greatly improve final performance. Finally,
the tree structure gives very useful information about contexts and parameters, and particularly

their discriminatory ability with regard to contextual situations.

7 DATA BASE UPDATE

Updating the data bases is necessary for the system to improve its performance through
experience. This process is performed at the end of a session; thus, update running time is not
important. During the session, update data are accumulated in file. This file contains the
successes as well as the failures of the system to provide correct parameters. Every attempt to
provide a parameter vector is analyzed (see Figure 35). If the attempt was a success — that is, if
the solution S returned by the process A(D, P) was really the one expected by the user — the
automatically retrieved parameter(s), and the manually set parameters (in the case where the user
had to set P manually), are incorporated into the data base, and associated probabilities are

adjusted.

If an attempt resulted in a failure — that is, if the user had to manually indicate the solution § he
wanted — then a search process is run to find the parameter vector that best reproduces the given
correct solution. The context vector and the best parameter vector(s) are then added to the data

base.

Any solution § is stored during a session, even if the attempt was a success. It allows the same
search process to be used to learn correct parameter settings for every algorithm available, even if
an algorithm was not chosen as appropriate. Like this, learning about all available algorithms

improves at the same time.

Because the data base update is performed off-line, it can be performed continuously whenever
the system is not otherwise engaged. We have not yet implemented it, but our design allows for
this time to be spent finding new context elements that better resolve the selection of algorithms
and parameters. This facility would constitute a very powerful capacity for the discovery of new

concepts — a challenging problem in machine learning.

8 SNAKES

The automated procedure for parameter setting that we have described is, in theory, suitable for
setting the parameters of virtually any algorithm. For purposes of evaluation, we have performed

our experimentation using one class of feature extraction algorithms — an optimization approach

94

known as snakes.

Snakes were originated by Terzopoulos, Kass, and Witkin [5, 4] and have since given rise to a
large body of literature. In the original implementation, the parameters were chosen interactively,
and potentially had to be changed from image to image. In our own implementation [65], which
is further described in the Appendix, those parameters are computed automatically and become

amenable to context-specific setting.

A 2-D snake is treated as a polygonal curve C defined by a set S containing n equidistant vertices
S={(xiyi), i= 1,...,n}

that can deform itself to optimize an objective function E(C).

Formally, we can write the energy E(C) that the snake minimizes as a weighted sum of the form
£(C) = ¥ ME(C)
i

where the magnitudes of the %; depend on the specific radiometry and geometry of the particular
scene under consideration and are not necessarily commensurate. To determine the values of the
A; weights in a context-specific way as opposed to an image-specific one, we have found it
necessary to normalize out those influences. The dynamics of the optimization are controlled by
the gradient of the objective function (Appendix, Equation a-6). We have therefore found that an

effective way to achieve this result is to specify a set of normalized weights A} such that

Y A=1.
1<i<n
The A! define the relative influences of the various components, and we use them to compute the

A; as follows:

Al
A= ———
| VES) I
where S0 is the estimate at the start of each optimization step. In this way we ensure that the
contribution of each F term is roughly proportional to the corresponding A independently of the

specific image or curve being considered.

Table 10 lists the parameters of the snake algorithm that we use to test the learning capability of
our system. In practice, there are a few more, like those that define the rate of increase of the

viscosity or the stopping conditions. However, since the algorithm is not very sensitive to these,

95

we simply fix them once and for all. The categorical parameters determine the type of snake to be
used, the presence or absence of a smoothing term, the optimization procedure to be used in the

absence of a smoothing term, and whether or not the endpoints of the snake ought to be fixed.

9 EXPERIMENTAL RESULTS: LEARNING AND SELECTING SNAKE
PARAMETERS

We have applied our approach to learning the snake algorithm parameters described in Table 10.
Our implementation makes use of the RADIUS Common Development Environment
(RCDE) [58].

9.1 Presentation

First, let us illustrate the general scheme of our system on the following example. Suppose the
user’s task is to delineate the ridge present in the two images depicted in Figure 36a. The user
sketches the 3-D curve in the left image of Figure 36b. The camera models and digital terrain
model associated with the image site are used to draw the curve in the right image of

(Figure 36b).

Then the user reviews contextual information (Figure 37). There are two categories,
corresponding respectively to global image context elements and curve-specific context elements.
We have eight global context elements: Look Angle giving the look angle of the sensor, GSD
giving the resolution, Sensor indicating the type of the sensor, Element type, Site type, Season
Characteristics that point out some season particularity (snow or rain), Illumination, and Sun
Angle which is important for predicting shadows. We also have eight context elements for
characterizing local contextual information: Zask indicating the class of object to be extracted,
Seed accuracy indicating the distance between the seed curve and the expected solution, Desired
accuracy indicating whether or not the user wants the optimized curve to strictly follow the
contours of the image, Site type, Material type, Terrain elevation, Seed min angle which is the
smallest computed angle between two consecutive lines defining the seed curve (minimum local
curvature), and Gradient mean which is the average of the intensity gradient around the seed

curve.

These sixteen context elements form the context vector C. Most of the items are calculated
automatically. The user can choose to not provide every item. The Parameter Selection button
returns a selection of parameters based on the nearest context vector present in the data base. The

user can select one of the provided parameter sets and invoke the algorithm. If the user can’t find

96

(b)

Figure 36: (a) Two images from one site used in our tests. (b) 3-D seed curve defined in two

J

SAR | IR | DTM |

views.
Look angle = lhﬂ
GSD 97
Senser Visaad!
Elementtype | Gray; Binary
Site type | general

Seasen characteristics | pone

Muminstion . [Sussy. Cloudy | Haze |

Sm angle . ltmkmm

Save context Wmaﬁoﬂ

Task- [ndgd
Seed accuracy Low | Middie

Sietype indus. | Urban | Semi Urbea [Rural
Material type [mknown

Terrain clovation Flat [Uneven’ Unevens|

Seed min angle []141.04
Gradiest mean [112.55

Snake parameter ae!cctioi!

Figure 37: Context menus: global context elements (left), site-specific context elements (right).

any parameter sets giving an acceptable optimized curve, he can adjust the solution manually, set

his own parameters, or modify the initial seed curve (thereby setting a new context). When the

user finds an acceptable solution, the initial curve, optimized curve, and parameters are

automatically saved to update the data base. The optimized curve is presented in Figure 38.

Figures 39 and 40 show subimages of the two sites we used in our tests. A site consists of several

97

x

Figure 38: Snake-optimized 3-D curve

images, generally aerial images of dimensions greater than 1000 x 1000 pixels. The two test sites
are very different from each other: the first one is 2 mountainous rural area with several industrial
facilities (Figure 39a), while the second is an urban area in flat terrain (Figure 40a). Figures 39b
and 40b show curves used as seeds in the snake optimization process. Figures 39¢ and 40c show
the results of the optimization. Although the building boundaries presented in Figures 40b and ¢
appear very similar, careful inspection will reveal that there are significant differences between
the two — the optimized version is much more precise than the sketch. Finally, Figures 39d

and 40d show the parameters provided by the system. The Smoothness constraint for the ribbon
of the first site is relatively small because of the relatively high curvature of the ribbon. This
aspect is captured by the context element Seed min angle. Gaussian smoothing needs to be
smaller for the curve of the second site because of the relatively high edge density around the
curve and, more particularly, the presence of shadow. This aspect is captured by the Gradient

mean context element.

98

ﬁ’arameters Values }

Type of snake ribbon
Fixed endpoints true
Gaussian smoothing 2
Initial step size 2.0
Stick length 10
Smoothness constraint | 0.6
Width constraint 0.5
e Curvature/tension ratio | 1.0
(c) (d)

(a) Example of images of the first test site. (b) Ribbon seed curve. (¢) Snake-optimized
ribbon curve. (d) Provided parameters.

Figure 39:

99

Table 6: Summary of selected system comparison.

a partition

Criteria INDUCE Cromwel & CLUSTER/2 CLUSTER/S COBWEB Anderson Kodratoff & || UNIMEM BEACON.6 BLIP
Michalski 80 | Kak 91 Michalsi, Stepp 83 | Michalsi, Stepp 86 | Fisher 87 90 Tecuci 88 Lebowitz 83 | Langleyetal 86 | Wrobel 89
Leaming type Concept Concept Conceptual Conceptual Conceptual Conceptual Conceptual Concept Concept Concept
learning learning clustering clustering clustering clustering clustering formation formation formation
Concept formation - - Maximizing Maximizing Predictability | Predictability | Conceptual Similarity - Demand
based on - - Comprensibility Comprensibility Distance Driven
Representation mode conj. of conj. of conj. of conj. of Probabilistic | Categories conj. of Discnminant | Mathematical rules
predicates predicates predicates predicates tree predicates net equations
Constructive induction limited no no no no no no no yes yes
Data manipulated Nominal Nominal Nominal Stuctured objects Nominal Nominal Nominal Nominal
Ordinal Ordinal Ordinal
Hierarchical | Hierarchical || Hierarchical Hierarchical
Numerical Numerical Numerical Numerical Numerical
Incremental leamning no no no no yes yes | no yes no yes
capability
Teaching required yes yes no no no no no no no no
Example order and no no no no yes yes no no no no
concepts are dependent
Number of categories no no nofyes no/yes’ yes yes yes - - -
determined automatically
Concepts produce yes yes yes yes yes yes yes no - -

4The number of categories is not determined automatically. However, by dividing the example classes until a manually determined bounding number of classes
is attained, the system can a posteriori find what is the “best” number of classes.

100

Table 7: Control Structure of COBWEB (From [78])

Function coBwEB(Object, Root)
1) Update probabilities of the root
2) If Root is a leaf
THEN return the expanded leaf to accommodate the new object
ELSE find that child of Root that best hosts Object and perform one of the following
a) Consider creating a new class and do so if appropriate
b) Consider merging two best hosts and do so if appropriate and call coBweBs(Object,
Merged node)
c) Consider splitting best host and do so if appropriate and call coBweB(Object, Root)
d) call coBweB(Object, Best child of Root)

Table 8: Example of categorization with three variables and three categoriés.

Varl | Var2 | Var3
Catl 3 5000 | 60
Cat2 2 1000 | 100
Cat3 3 2000 | 150

Table 9: Example of categorization with three variables and three categories.

——-> Class O ---> Class 2 ---> Class 4 -——> Class 25 : Ex = (4 5558 58)
| =m==—- > Class 8 : Ex = (3 4939 62)

= > Class 7 ---> Class 16 ~--> Class 18 : Ex

| === > Class 17 : Ex

|===m=- > Class 15 : Ex = (2 5135 48)

(3 5181 52)
(3 5164 53)

jommm—- > Class 3 ---> Class 14 : Ex = (1 9506 100)
[> Class 6 : Ex = (2 10497 103)
|=mmmmm > Class 5 -—-> Class 13 : Ex = (2 10100 106)
[> Class 12 -—-> Class 24 : Ex = (2 9058 111)
(P— > Class 23 : Ex = (3 9947 110)

[J—— > Class 1 ---> Class 11 : Ex = (0 19230 141)
| e > Class 10 ---> Class 22 : Ex

j-m——— > Class 21 : Ex

| === > Class 9 ---> Class 20 : Ex

| == > Class 19 : Ex

(1 19718 147)
(1 19810 150)
(2 20439 146)
(1 20618 148)

nononown

101

Table 10: Snake categorical and numerical control parameters. These parameters and related equa-
tions are defined in the Appendix.

[Categorical parameters | B
Type of snake Snakes can model smooth, polygonal or ribbon curves.
Fixed endpoints The endpoints of the snake can be either fixed or not.

[Numerical parameters |]
Gaussian smoothing Size of the gaussian mask used to compute image gradients
Initial step size A, pixel step size of Equation a-7 used to compute the initial viscosity
Stick length Initial intervertex spacing of the snake, in pixels
Smoothness constraint p weight of the deformation component, Equation a-4
Width constraint v weight of the width component, Equation a-9
Curvature/tension ratio Relative contribution of tension and curvature, Equations a-4 and a-8

102

(b)

[Parameters Values |
Type of snake Polygonal
Fixed endpoints not used
Gaussian smoothing 1
Initial step size 2.0
Stick length not used
Smoothness constraint | not used
Width constraint not used -
Curvature/tension ratio | not used

(c) (d)

Figure 40: (a) Example of images of the second test site. (b) Closed 2-D curve. (¢) Snake-
optimized 2-D curve. (d) Provided parameters.

9.2 System Evaluation

Testing the efficiency of our system poses three major problems with respect to maintaining test
objectivity. The first one is the choice of the image curves to optimize. The snake algorithm
requires some initial curves as input data. A bias in the experiments can be easily introduced by
providing initial curves too close to the expected solution. In this case, the snake is going to

converge toward the good solution whatever the parameters are.

The second problem is the order in which curves are optimized. Depending on the way evaluation
is performed, another bias can be introduced by placing simpler examples at the end of the
experiment, creating the illusion that the learning capability of the system has improved.
Moreover, we have seen that the incremental scheme of retrieval is sensitive to the order of
experiments. The best solution would be to define all the curves we want to test, and present them

randomly to the user.

The last problem is the evaluation of the results. Some results may be acceptable for one user but
not for another. This paper describes an ongoing study, and determining how well the learned
result will carry over from one user to another has not yet been attempted. All the test results

presented below come from a single user.

One very natural method of evaluation consists in using the system and counting the cumulative
number of times the user has to adjust the result by hand. As the data base grows, the intervention

required of the user should decrease, and so required adjustments should be fewer in number.

Results of this evaluation for the retrieval method based on the similarity measure expressed by
Equation 29 are presented on Figure 41. We can see that for both sites, system reactivity is
similar. There is a continuous decrease in the slope of each curve. This decrease is due to the
effect of successfully\leaming suitable parameter assignments and represents an improvement in
efficiency. The frequency of manual parameter setting that is required clearly decreases and tends
toward zero, which is the theoretical ideal. The slope decrease also means that the user needs

fewer trials to achieve his goal.

The third curve shows the hypothetical number of manual parameter settings for a user who does
not use the learning module, but simply sets the parameters himself before each optimization.
This curve fits the two others when the system starts to learn, and then tends to an asymptotic line
with slope 2.0, indicating a mean of two manual settings per curve to optimize. The difference
between the amount of hypothetical manual parameter setting and the results obtained by a user
employing the learning process indicates the improvement in efficiency provided by the learning

module. From the graph it is apparent that the improvement increases as the system gains

104

Cumulative number of manual setting
100 T T T T T T

90

70

60 I

........

so | S

40 [

Site 1 —
Site 2 -

20 manual -----

10 F 7

0 5 10 15 20 25 30 35

Figure 41: Cumulative number of manual settings of parameters

experience with the site.

Without the assistance of the parameter learning module, a novice user can require ten or more
invocations of the snake algorithm before he attains a suitable parameter setting for each seed
curve to be optimized. The capacity of the learning module to reduce the required number of
invocations (to less than one per task in our experiments) represents a significant improvement in

the efficiency with which snake algorithms can be employed in an interactive system.

9.3 Evaluation of Retrieval Procedure

This first experiment demonstrates clearly the learning ability of the system. However, it is
sensitive to the three problems mentioned earlier: choice of original curves, order of examples,

and evaluation of the results.

We therefore propose another method to evaluate more specifically the retrieval procedure. We
consider the set of n curves that have already been optimized in the first experiment. For each
curve i < n, we know C; the contextual information associated with the curve, and P; the
parameter setting that has been used to find the optimized curve. Each context C; is presented

randomly to the system that provides a set of n) possible parameters. Because we know what the

105

correct parameter setting is (P;) we can measure the percentage of success of the system.

There are two ways to measure this percentage of success. The first one is to count the number of
times parameter vector P; belongs to the set of nj parameter vectors provided by the system.
Because the system does not make constructive learning, and so does not propose new parameter
values but instead only provides parameter vectors that have already been used, another measure
is more accurate. It consists in counting the number of times parameter vector P; belongs to the
set of n| parameter vectors presented to the user when P; was known to already belong to one of
the categories of the system (P; has already been used in a similar situation). Among the 68

optimized curves used in the experiments (n = 68), 39 appear to be in this situation®.

This method is better than the first one for three reasons. First, randomly presenting the context
vectors to the system is practically very easy to perform. Thus, we are going to be able to test the
impact of example order on the different methods. Moreover, the user evaluation of the snake
algorithm does not influence the measure that evaluates the performance of the system. Finally,
the method is much less sensitive to the choice of the initial curves. Actually, this choice
influences only the final structure of the category tree. “Too easy” curves tend to be associated
with the same standard parameter setting, and thus always classified in the same category, thereby

decreasing the number of categories and facilitating the categorization.

9.3.1 Experimental results

Table 11 shows the performance results of the three different approaches based on conceptual
clustering presented in Section 6: COBWEB, Anderson’s method, and our method, which use the
variance for numerical variables. COBWEB uses numerical context values as categorical ones.
Anderson’s and our method discriminate between numerical and categorical context elements. In
all experiments, unless otherwise mentioned, the number ng of contexts considered as the nearest
context in the category structure is set to 10, and n;, the number of parameter settings presented to

the user is set to 3.

Table 11: Percentage of success of the different retrieval techniques.

COBWEB | Anderson’s | Variance method
site | +2 77.6 78.9 78.1
site 1 83.9 83.3 81.7
site 2 85.8 86.5 83.8

6Note that globally this number is independent of the order of the examples, even if the curves taken into account
are not always the same.

106

Percentages presented in Table 11 are an average of success over twenty runs where examples are
presented randomly to the system. As we can see, results are similar for all methods. This is
explainable knowing that among the sixteen context elements used in this experiment, only two
have numerical values that are different for each example (gradient-mean and seed-mean-angle).
All other numerical values are associated with discrete functions or do not vary much (like Sun
angle). These kinds of numerical values can be considered as categorical ones. Thus, the
influence of the distinction between numerical and categorical values is low in this experiment.

However, we can see that the system performs reasonably well, even with a small number of

examples (39 examples on Site 1, 29 on Site 2).

Anderson’s approach is favored by the method of parameter extraction we use after having
selected the nearest contexts. Anderson’s category structure is flat, and as a result, the number of
context elements selected is generally greater than no. This is very sensitive when a small number
of examples are present in the data base (as it is the case for Site 2). A priori knowledge required
by the method has been set to some standard values. Other parameters required an exhaustive
search among possible values to be set properly. Only one set of parameters gives correct
categorization. Moreover, for the simple example presented in Section 6, the required setting was

completely different, and very sensitive to the examples that were generated.

The tree structure produced by the hierarchical methods (COBWEB and Variance) are fairly
similar for both methods. Analysis of normative context values’ at the tree root shows that the
classification first uses the fask context element to categorize examples. Children of the root
regroup examples with similar fask. This is very satisfactory, because in the case of the snake
algorithm, we know that the task is of first importance to determining a good parameter setting.

For instance, roads and building delineation will require totally different settings.

9.3.2 Influence of example order

As mentioned earlier, incremental schemes are sensitive to the order in which examples are
presented. To test this influence, we compute the standard deviation over twenty runs of the
number of successes for the three retrieval techniques. Results are presented in Table 12. Again,
we can see that the values are similar. They are small, too. This means that the search structure of

the categorization process does not affect the inference ability of the final category structure, as

pointed out by Anderson [80].

7Context values V;; that are present in class @y with a conditional probability P(A; = V;j|wy) greater than 0.67.

107

Table 12: Standard deviation of the number of successes for the different retrieval techniques.

COBWEB | Anderson’s | Variance method
site | +2 1.52 1.54 1.43
site 1 0.79 0.80 0.80
site 2 0.58 0.85 0.78

9.3.3 Influence of ng and n;

The only two parameters of the system are np, the number of contexts selected as being the final
nearest contexts in the category structure, and n;, the number of parameter settings presented to
the user. Figure 42 shows the influence of nj (with no = 10) on the percentage of success. As we
can see, the percentage of success is over 50%, even with n; = 1. It means that more than half of

the time, the first guess of the system was the good one. A value of 3 seems to be reasonable for

ni.

Percentage of success as a function of nl

20 + COWEB —— -1
Anderson’s ----
variance Method -----

Figure 42: Influence of n; values over percentage of success.

As shown in Figure 43, the influence of ng is less important. A value ng 2> 7 is already sufficient
to provide good results. It is important to note that the three methods presented use predictability
to categorize a new context and similarity to retrieve n parameter settings from the ngp nearest
contexts from the new context. By increasing ng, we give more importance to the similarity
measure, and less to the predictability one. When ng equals n, the number of examples present in

108

the data base, all three methods are equivalent to the one presented in Section 4 based only on
similarity and with exhaustive search in the data base. As we can see in Figure 43, forng > 7,
performance of the variance method does not improve any more. It means that we have identical
performances if the new context is categorized and then compared to only np contexts, or if the
new context is compared to the whole data base. This proves the ability of the heuristic search of
categorization.

Percentage of success as a function of n0
100 T T Y T T T T T

60 |-

40

20 COWEB — -
Anderson’s —=°~
variance Method -----

Figure 43: Influence of np values over percentage of success.

9.3.4 Influence of number of context elements

We explained the similar performance of the different retrieval methods by the large number of
categorical elements in the context vector we use. To draw a more accurate view of the retrieval
methods, we performed tests on a subset of context elements containing three categorical, two
numerical, and two ordinal context elements. These elements where chosen as the most important
for categorization. Partial results we obtained are shown in Table 13. Performance of Anderson’s
and Variance method,s which separate categorical and numerical variables, are now better than

COBWEB’s method using only categorical variables.

Results of the three methods are also globally better than those shown in Figure 11. This points
out an important factor : Context elements have to be adapted to the examples present in the data

109

Table 13: Percentage of success of the different retrieval techniques using a subset of seven context
elements.

COBWEB | Anderson’s | Variance method
site 1 +2 82.2 83.8 85.4

base. Our system has been designed for large data bases. The large number (sixteen) of context
elements we use is not adapted to the small number of examples we have now in the data base. By
removing context elements that are not essential because their values do not vary much in the
whole data base, we improve the performance of the system. The automatic selection of context
elements with regard to the number of examples already encountered is of primary interest in our

future works.

Other future work remains on testing the ability of our system to choose an algorithm among
several, and analyzing the various probabilities provided by the category structure. For instance,
joint analysis of conditional probabilities P(A; = V;j|wy) and P(wy|A; = Vij) should be an easy
way to find out the discriminatory ability of each context element. This also should be a way to
find a posteriori similarities between context element values. Computing this kind of similarity is
essential for categorical context elements, and should greatly improve the search of similar

contexts, and thus improve the retrieval performances.

10 CONCLUSION

This paper grew out of an attempt to solve a practical and important problem in interactive scene
analysis: the automated selection of feature extraction algorithms and their parameters, as a
function of image content and task requirements. An abstract characterization of this problem is
that of mapping a multidimensional context sﬁace (representing image data and task specification)
into a multidimensional algorithm-selection space (the extraction algorithms and their parameter
settings). It was immediately apparent that an analytic design was infeasible. Two of the many

reasons are

e We don’t have effective ways of analytically describing image content.

e The range of possible tasks and image types is essentially infinite — no a priori design can

hope to subsume all possible situations.

A “learning” approach appeared to be the only alternative.

110

The fact that the learning system is embedded in an interactive system (to deal with continuous
change) offers both a challenge and an opportunity. The human operator must be aided rather than

burdened by the presence of the learning system but can provide directed feedback about system

performance.

Thus, the primary contribution of this paper lies in the structuring of an interactive, embedded
learning system for an important problem in the design of computer vision systems — the
automated selection of feature extraction algorithms and their parameters, as a function of image
content, collateral data, and task requirements. The framework we have described lays the
foundation for new learning mechanisms to be developed and tested — we have taken the first
steps toward applying machine learning in a nonconventional learning context. We have also
offered solutions to some of the subproblems that arise: how to define similarity of context
vectors in which elements are both numerical and categorical, how to choose among the multiple
parameter vectors that might be retrieved from the data base, and how to update the data base with
experience gained through continual use of the feature extraction system. We have 1mplemented
and tested an initial design and demonstrated successful performance within a cartographlc

modeling domain using snake algorithms.

A SNAKES

Here we provide a mathematically precise account of the snake algorithms that we have employed

within our system for learning the parameters of vision algorithms.

a.1 2-D Linear Snakes

A 2-D snake is treated as a polygonal curve C defined by a set containing n equidistant vertices
S={(xiy),i=1,...,n} (a-1)
that can deform itself to maximize the average edge strength along the curve G(C):
60y =k [IV as, @2
1€l Jo
where I represents the image gray levels, s is the arc length of C, f(s) is a vector function mapping

the arc length s to points (x,y) in the image, and |C| is the length of C. In practice, G(C) is
computed by sampling the polygonal segments of the curve at regular intervals, looking up the

111

gradient values |V I(f(s))| in precomputed gradient images, and summing them up. The gradient
images are computed by gaussian smoothing the original image and taking the x and y derivatives
to be finite differences of neighboring pixels. We have shown [65] that the points along a curve
that maximizes G(C) are maxima of the gradient in the direction normal to the curve wherever
the curvature of the curve is small. Therefore, such a curve approximates edges well except at
corners. Unfortunately, G(C) is not convex functional and to perform the optimization, following
Terzopoulos et al., we minimize an energy £ C) that is a weighted difference of a regularization
term Ep(C) and of G(C):

EC) = MWEp(C)—AcG(C) (a-3)
Ep(C) = plz(x;—xi_1)2+()’i—}’i—l)2
+ #2Z(ZXi—Xi—1—Xi+1)2+(2)'i—yi—1—yi+1)2 (a-4)

The first term of Ep approximates the curve’s tension and the second term approximates the sum
of the square of the curvatures, assuming that the vertices are roughly equidistant. In addition,
when starting, as we do, with regularly spaced vertices, this second term tends to maintain that
regularity. To perform the optimization we could use the steepest or conjugate gradient, but it
would be slow for curves with large numbers of vertices. Instead, it has proven much more

effective to embed the curve in a viscous medium and solve the equation of the dynamics

0E dS

§§+a:§ = O,- (a-S)
L 0E _ dEp dG
with =¢ = 55~ 35

where ‘E is the energy of Equation a-3, a the viscosity of the medium, and S the state vector of
Equation a-1 that defines the current position of the curve. Since the deformation energy Ep in
Equation a-4 is quadratic, its derivative with respect to S is linear and therefore Equation a-5 can

be rewritten as

J0E
KSS[-HX(S, —S[_]) - ‘aTS“ SI—I
= (Ks+od)S, = oaS-1— %% (a-6)
Si-1
where 3T
o5 K

112

and K is a sparse matrix. Note that the derivatives of Ep with respect to x and y are decoupled so

that we can rewrite Equation a-6 as a set of two differential equations in the two spatial

coordinates
G
K X, = oX- —_—
(K +od)X; tl+aXX,_1
G
(K+al)Y, = aY,_1+—aY -

where K is a pentadiagonal matrix, and X and Y are the vectors of the x and y vertex coordinates.
Because K is pentadiagonal, the solution to this set of equations can be computed efficiently in
O(n) time using LU decomposition and backsubstitution. Note that the LU decomposition need

be recomputed only when o changes.

In practice o is computed in the following manner. We start with an initial step size A, expressed

in pixels, and use the following formula to compute the viscosity:

V2n

=4, (a-7)

oS

az'

where n is the number of vertices. This ensures that the initial displacement of each vertex 1s on
the average of magnitude A,. Because of the non linear term, we must verify that the energy has
decreased from one iteration to the next. If, instead, the energy has increased, the curve is reset to
its previous position, the step size is decreased, and the viscosity recomputed accordingly. This is
repeated until the step size becomes less than some threshold value. In most cases, because of the
presence of the linear term that propagates constraints along the whole curve in one iteration, it

takes only a small number of iterations to optimize the initial curve.

The snakes described above have proved very effective at modeling smooth curves. Some objects,
however, such as buildings, are best modeled as polygons with sharp corners. They can be
handled in this context by completely turning off the smoothness term. Such objects typically

have a relatively small number of corners, and the optimization is performed using a standard

optimization technique.

a.2 3-D Linear Snakes

Snakes can be naturally extented to three dimensions by redefining C as a 3-D curve with n

equidistant vertices § = {(xi yi zi)}. i=1,... ,n} and considering its projections in a number of

113

images for which we have accurate camera models. The average edge strength G(C) of
Equation a-2 becomes the sum of the average edge strengths along the projection of the curve in
the images under consideration, and the regularization term of Equation a-4 becomes

Ep(C) = mY,(xi—%i-1)2 + (i — yie1)* + (zi — zi-1)2 (a-8)

1]
+ o (20— xim — Xip1)P + (29— Yie1 = Yisd 2+ (22 — i1 — zit1)?
i

Since the derivatives of Ep with respect to x, y, and z are still decoupled, we can rewrite Equation
a-6 as a set of three differential equations in the three spatial coordinates:
9G

K X = a4+ =

X1

d
(K+ad)Y, = oY1+ 5}2

_ G
(K—l-(lI)Zx = 0Zi-1+ ‘gz -

where X,Y, and Z are the vectors of the x,y, and z vertex coordinates.

The only major difference with the 2-D case is the use of the images’ camera models. In practice,
G(C) is computed by summing gradient values along the line segments linking the vertices’
projections. These projections, and their derivatives, are computed from the state vector S using
the camera models. Similarly, to compute the viscosity, we use the camera models to translate the
average initial step A, a number of pixels, into a step Ay expressed in world units and use the

latter in Equation a-7.

a.3 Ribbons

2_D snakes can also be extended to describe ribbon-like objects such as roads in aerial images. A
ribbon snake is implemented as a polygonal curve forming the center of the road. Associated with
each vertex i of this curve is a width w; that defines the two curves that are the candidate road
boundaries. The state vector S becomes the vector S = {(x; yi wi)}, i=1,...,n} and the average
edge strength the sum of the edge strengths along the two boundary curves. Since the width of

roads tends to vary gradually, we add an additional energy term of the form

Ty(C) = X (wi-wi1)’ (2-9)

114

dEw
= = LW
oW ’
where W is the vector of the vertices’ widths and L a tridiagonal matrix. The total energy can then
be written as
EC) = A Ep(C) +Mw Bw(C) — A G(C)

and at each iteration the system must solve the three differential equations:

0
(K+al)X, = oXi—1+ a—XQ

X1

9G
(K+G.I)Yt = a1+ —a‘?

0
(K+a)W, = oW1+ é—g

Y-

W1

7_D ribbons can be turned into 3D ones in exactly the same way 2-D snakes are turned into 3-D
ones. The state vector S becomes the vector S = {(x; yi z wi)}, i = 1,...,n} and at each iteration

the system must solve four differential equations, one for each coordinate.

115

REFERENCES

[1] D. Gerson, “RADIUS: The Government Viewpoint,” in ARPA Image Understanding
Workshop, Jan. 1992.

[2] J. Mundy and P. Vrobel, “The Role of IU Technology in RADIUS Phase II,” in
Unpublished, May 1994.

[3] T. M. Strat and W. D. Climenson, “RADIUS: Site Model Content,” in ARPA Workshop on
Image Understanding, Nov. 1994.

[4] D. Terzopoulos, A. Witkin, and M. Kass, “Symmetry-seeking Models and 3D Object
Reconstruction,” International Journal of Computer Vision, vol. 1, pp. 21 1-221, 1987.

[5] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,” International
Journal of Computer Vision, vol. 1, no. 4, pp. 321-331, 1988.

[6] P.Fuaand Y. G. Leclerc, “Model Driven Edge Detection,” Machine Vision and Applications,
vol. 3, pp. 45-56, 1990.

[7] P. Fua and C. Brechbuhler, “Imposing Hard Constraints on Soft Snakes,” in European
Conference on Computer Vision, (Cambridge, England), pp. 495-506, April 1996. Available
as Tech Note 553, Artificial Intelligence Center, SRI International.

[8] R. C. Jain and T. O. Binford, “Ignorance, Myopia, and Naiveté in Computer Vision
Systems,” CVGIP: Image Understanding, vol. 53, pp. 112-117, Jan. 1991.

[9] Y. Aloimonos, “Purposive and Qualitative Action Vision,” in Proc. DARPA Image
Understanding Workshop, (Pittsburgh, PA), pp. 816-828, September 1990.

[10] V. Clément, G. Giraudon, S. Houzelle, and F. Sandakly, “Interpretation of Remotely Sensed
Images in a Context of Multisensor Fusion using a Multispecialist Architecture,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 31, July 1989.

[11] D.D. Fu, K.J. Hammond, and M. J. Swain, “Vision and Navigation in Man-Made
Environments: Looking for Syrup in all the Right Places,” in Proceedings of the Workshop
on Visual Behaviors, (Seattle, WA), pp. 20-26, June 1994.

[12] T. M. Strat and M. A. Fischler, “Context-Based Vision: Recognizing Objects Using Both 2D
and 3D Imagery,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13,
pp. 1050-1065, Oct. 1991.

116

[13] T. M. Strat and M. A. Fischler, “The Role of Context in Computer Vision,” in ICCV
Workshop on Context-Based Vision, (Cambridge, MA), June 1995.

[14] J. Mundy, R. Welty, L. Quam, T. Strat, W. Bremmer, M. Horwedel, D. Hackett, and
A. Hoogs, “The RADIUS Common Development Environment,” in DARPA Image
Understanding Workshop, (San Diego,CA), pp. 215-226, Morgan Kaufmann, 1992.

[15] P. Fua and P. Sander, “Segmenting Unstructured 3D Points into Surfaces,” in European
Conference on Computer Vision, (Genoa, Italy), pp. 676680, April 1992.

[16] R. Szeliski and D. Tonnesen, “Surface Modeling with Oriented Particle Systems,” in
Computer Graphics, SSIGGRAPH Proceedings, vol. 26, pp. 185-194, July 1992.

[17] L. Quam, “Hierarchical Warp Stereo,” in DARPA Image Understanding Workshop,
pp. 149-155, 1984. |

[18] H. Nishihara, “Practical Real-Time Imaging Stereo Matcher,” Optical Engineering, vol. 23,
no. 5, 1984.

[19] T. Kanade and M. Okutomi, “A Stereo Matching Algorithm with an Adaptative Window:
Theory and Experiment,” in DARPA Image Understanding Workshop, Morgan Kaufmann,

September 1990.

[20] E. P. Baltsavias, Multiphoto Geometrically Constrained Matching. PhD thesis, Institute for
Geodesy and Photgrammetry, ETH Zurich, December 1991.

[21] F. Devernay and O. D. Faugeras, “Computing Differential Properties of 3—D Shapes from
Stereoscopic Images without 3-D Models,” in Conference on Computer Vision and Pattern
Recognition, (Seattle, WA), pp. 208-213, June 1994.

[22] B. Wrobel, “The evolution of Digital Photogrammetry from Analytical Photogrammetry,”
Photogrammetric Record, vol. 13, pp. 765-776, April 1991.

[23] C. Heipke, “Integration of Digital Image Matching and Multi Image Shape From Shading,”
in International Society for Photogrammetry and Remote Sensing, (Washington, D.C.),
pp- 832-841, 1992.

[24] Y. G. Leclerc and A. F. Bobick, “The Direct Computation of Height from Shading,” in

Conference on Computer Vision and Pattern Recognition, (Lahaina, Maui, Hawaii), June

1991.

117

[25] P. Fua and Y. G. Leclerc, “Object-Centered Surface Reconstruction: Combining
Multi-Image Stereo and Shading,” International Journal of Computer Vision, vol. 16,
pp- 35-56, September 1995.

[26] R. Fletcher, Practical Methods of Optimization. John Wiley & Sons, Chichester, New York,
Brisbane, Toronto, Singapore, 2nd ed., 1987. A Wiley-Interscience Publication.

[27] P. Gill, W. Murray, and M. Wright, Practical Optimization. London a.o.: Academic Press,
1981.

[28] D. Metaxas and D. Terzopoulos, “Shape and Nonrigid Motion Estimation through
Physics-Based Synthesis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, no. 6, pp. 580-591, 1991.

[29] A. Amini, S. Tehrani, and T. Weymouth, “Using Dynamic Programming for Minimizing the
Energy of Active Contours in the Presence of Hard Constraints,” in International

Conference on Computer Vision, pp. 95-99, 1988.

[30] C. Brechbiihler, G. Gerig, and O. Kiibler, “Parametrization of Closed Surfaces for 3-D
Shape Description,” Computer Vision and Image Understanding, vol. 61, pp. 154-170,
March 1995.

[31] Rosen, “Gradient Projection Method for Nonlinear Programming,” SIAM Journal of Applied
Mathematics, vol. 8, pp. 181-217, 1961.

[32] L. Quam, “Road Tracking and Anomaly Detection,” in DARPA Image Understanding
Workshop, pp. 51-55, Morgan Kaufmann, May 1978.

[33] P. Fua, “Parametric Models are Versatile: The Case of Model Based Optimization,” in
ISPRS WG 11172 Joint Workshop, (Stockholm, Sweden), September 1995.

[34] W. Neuenschwander, P. Fua, G. Székely, and O. Kubler, “Making Snakes Converge from
Minimal Initialization,” in DARPA Image Understanding Workshop, (Monterey, CA),
Morgan Kaufmann, November 1994.

[35] D. Terzopoulos, A. Witkin, and M. Kass, “Symmetry-seeking Models for 3D Object
Reconstruction,” International Journal of Computer Vision, vol. 1, pp. 211-221, Oct. 1987.

[36] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,” International
Journal of Computer Vision, vol. 1, no. 4, pp. 321-331, 1988.

118

[37] L. Cohen, “On Active Contour Models and Balloons,” Computer Vision, Graphics, ahd
Image Processing: Image Understanding, vol. 53, pp. 211-218, March 1991.

[38] L. Staib and J. Duncan, “Boundary Finding with Parametrically Deformable Models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, pp. 1061-1075, Nov.

1992.

[39] F. Leymarie and M. Levine, “Tracking deformable objects in the plane using an active
contour model” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15,

pp. 617634, June 1993.

[40] D. Terzopoulos and R. Szeliski, “Tracking with Kalman Snakes,” in Active Vision (A. Blake
and A. Yuille, eds.), The MIT Press, 1992.

[41] B. Bascle and R. Deriche, “Stereo Matching, Reconstruction und Refinement of 3D Curves
Using Deformable Contours,” in International Conference on Computer Vision, (Berlin,
Germany), pp. 421-430, 1993.

[42] M. Berger and R. Mohr, “Towards Autonomy in Active Contour Models,” in Tenth
International Conference on Pattern Recognition, (Atlantic City, NJ), pp. 847-851, June

1990.

[43] O. Henricsson and W. Neuenschwander, “Controlling Growing Snakes by Using
Key-Points,” in International Conference on Pattern Recognition, (Jerusalem, Israel),

pp. 68-73, Oct. 1994.

[44] D. Terzopoulos, “On matching deformable models to images,” Topical Meeting on Machine
Vision Tech. Digest Series, vol. 12, pp. 160167, 1987.

[45] R. Courant and D. Hilbert, Methods of mathematical physics, vol. 1. Wiley: New York,
1989.

[46] V. Arnold, Ordinary Differential Equations. MIT Press, 1973.
[47) A.W. Bush, Perturbation methods for engineers and scientists. CRC Press, 1992.

[48] W. Neuenschwander, Elastic deformable contour and surface models for 2-D and 3-D image
segmentation. PhD thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, Sept.

1995.

119

[49] M.-O. Berger, Les contours actifs: modélisation, comportement et convergence. PhD thesis,
Instiut National Polytechnique de Lorraine, Inria Lorraine, Centre de Recherche en

Informatique de Nancy, France, Feb. 1991.

[50] C. A. Davatzikos and J. L. Prince, “Adaptive active contour algorithms for extracting and
mapping thick curves,” in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 524-529, 1993.

[51] T. Strat and M. Fischler, “Natural Object Recognition: A Theoretical Framework and Its
Implementation,” Proc. IJCAI-91, August 1991.

[52] T. M. Strat, Natural Object Recognition. Springer-Verlag, New York, 1992.

[53] T. M. Strat, “Employing Contextual Information in Computer Vision,” in DARPA Workshop
on Image Understanding, pp. 217-229, April 1993.

[54] L. Quam and T. Strat, “SRI Image Understanding Research in Cartographic Feature
Extraction,” in International Society for Photogrammetry and Remote Sensing, (Munich),
Sept. 1991.

[55] P. Graham, On Lisp: Advanced Techniques for Common Lisp. Prentice Hall, Englewood
Cliffs, NJ, 1994.

[56] M. Fischler and H. Wolf, “Linear Delineation,” in Conference on Computer Vision and
Pattern Recognition, pp. 351-356, June 1983.

[57] A.J. Hanson and L. Quam, “Overview of the sri cartographic modeling environment,” in
DARPA Workshop on Image Understanding, pp. 576-582, Apr. 1988.

[58] J. Mundy, R. Welty, L. Quam, T. Strat, W. Bremmer, M. Horwedel, D. Hackett, and
A. Hoogs, “The RADIUS Common Development Environment,” in Proc. of AIPR,
Washington, DC, Oct. 1991. Also in Proc. of DARPA Image Understanding Workshop, San
Diego, California, 1992.

[59] T. M. Strat and M. A. Fischler, “Context-based vision: Recognizing objects using both 2d
and 3d imagery,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 13,
pp. 1050-1065, Oct. 1991.

[60] B. Draper, A. R. Hanson, and E. Riseman, “Learning knowledge-directed visual strategies,”
in DARPA Workshop on Image Understanding, pp. 933-940, 1992.

120

[61] B. Draper, A. R. Hanson, and E. Riseman, “Statistical properties of learning recognition
strategies,” in DARPA Workshop on Image Understanding, pp. 557,565, 1993.

[62] D. M. McKeown, W. A. Harvey, and J. McDermott, “Rule-Based Interpretation of Aerial
Imagery,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 7, pp. 570-385,

Sept. 1985.

[63] B. Draper, R. Collins, J. Brolio, A. R. Hanson, and E. Riseman, “The Schema System,”
International Journal of Computer Vision, vol. 3, no. 2, pp. 209-250, 1989.

[64] V. Clement, G. Giraudon, S. Houzelle, and F. Sandakly, “Interpretation of remotely sensed
images in a context of multi sensor fusion using a multi-specialist architecture,” IEEE Trans.

on Geoscience and Remote Sensing, 1993.

[65] P. Fua and Y. G. Leclerc, “Model Driven Edge Detection,” in DARPA Image Understanding
Workshop, (Cambridge, Massachusetts), pp. 1016-1021, April 1988.

[66] Z. Wang, S. Wong, and Y. Yao, “An analysis of vector space models based on computational
geometry,” in ACM SIGIR Conf. on Research and Development in Information Retrieval,
pp. 152-160, June 1992.

[67] P. Langley, J. Zytkow, H. Simon, and G. Bradshaw, The search for Regularity: Four Aspects
of Scientific Discovery, pp. 425,469. Morgan Kaufmann Publishers Inc., Los Altos, CA,

1986.

[68] M. Lebowitz, Concept Learning in a Rich Input Domain, pp. 193-214. Morgan Kaufmann
Publishers Inc., Los Altos, CA, 1986.

[69] M. Lebowitz, Experiments with Increméntal Concept Formation: UNIMEM, pp. 103,138.
Kluwer Academic Publishers, Boston, 1987.

[70] S. Wrobel, Demand-driven Concept Formation, pp. 289,319. Springer Verlag, 1989.

[71] H. Dreyfus, “La portee philosophique du connexionisme,” in Introduction aux sciences

cognitives, In French, Editions Folio, 1987.

[72] A. Giacometti, Modeles hybrides de | ‘expertise. PhD dissertation, Telecom Paris. In French,
1993.

[73] R. Michalski, “Pattern recognition as rule-guided inductive inference,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. PAMI-2, pp. 349,361, July 1980.

121

[74] R. Cromwell and A. Kak, “Automatic generation of object class descriptions using symbolic
learning techniques,” in Proc. of the ninth National Conference on Artificial Intelligence,
pp- 710,717, 1991.

[75] R. Michalski and R. Stepp, “Automated construction of classifications: Conceptual
clustering versus numerical taxonomy,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. PAMI-5, pp. 396,409, July 1983.

[76] R. Stepp and R. Michalski, Conceptual Clustering: Inventing Goal-Oriented Classifications
of Structured Objects, pp. 471,498. Morgan Kaufmann Publishers Inc., Los Altos, CA, 1986.

[77] Y. Kodratoff and G. Tecuci, “Learning based on conceptual distance,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 10, pp. 897,909, Nov. 1988.

[78] D. Fisher, Knowledge Acquisition Via Incremental Conceptual Clustering, pp. 139,172.
Kluwer Academic Publishers, Boston, 1987.

[79] J. Anderson, The adaptive character of thought. Hillsdale, NJ: Erlbaum, 1990.

[80] J. Anderson, “The adaptative nature of human categorization,” Psychological Review,
vol. 18, pp. 409-429, 1991.

[81] W. Ahn and D. Medin, “A two-stage model of category construction,” Cognitive Science,
vol. 16, pp. 81,121, 1992.

122

